
Understanding the Role of Noise in Stochastic Local Search:
Analysis and Experiments

Ole J. Mengshoel
RIACS

NASA Ames Research Center
Mail Stop 269-3

Mo¤ett Field, CA 94035
omengshoel@riacs.edu

Abstract

Stochastic local search (SLS) algorithms have recently been proven to be among the best approaches
to solving computationally hard problems. SLS algorithms typically have a number of parameters,
optimized empirically, that characterize and determine their performance. In this article, we focus on
the noise parameter. The theoretical foundation of SLS, including an understanding of how to the
optimal noise varies with problem di¢ culty, is lagging compared to the strong empirical results obtained
using these algorithms. A purely empirical approach to understanding and optimizing SLS noise, as
problem instances vary, can be very computationally intensive. To complement existing experimental
results, we formulate and analyze several Markov chain models of SLS. In particular, we compute
expected hitting times and show that they are rational functions for individual problem instances as
well as their mixtures. Expected hitting time curves are analytical counterparts to noise response curves
reported in the experimental literature. Hitting time analysis using polynomials and convex functions
is also discussed. In addition, we present examples and experimental results illustrating the impact
of varying noise probability on SLS run time. In experiments, where most probable explanations in
Bayesian networks are computed, we use synthetic problem instances as well as problem instances from
applications. We believe that our results provide an improved theoretical understanding of the role of
noise in stochastic local search, thereby providing a foundation for further progress in this area.

1 Introduction

The stochastic local search (SLS) approach has proven to be highly competitive for solving a range of
hard computational problems including satis�ability of propositional logic formulas [11, 18, 45, 46] as well
as computing the most probable explanation [22, 27, 30] and the maximum a posteriori hypothesis [36,
37] in Bayesian networks. While the details of di¤erent SLS algorithms vary [18], by de�nition they all
use stochasticity or noise. In this article we focus on noise during local search rather than, say, noisy
initialization.
Empirically, it turns out that noise has a dramatic impact on the run time of SLS algorithms [14, 17,

26, 44, 45]. Intuitively, there is a fundamental trade-o¤ between using high and low levels of noise in SLS.
Let 0 � p � 1 represent the probability of taking a noise step. The argument for using low noise p is
that this enables an SLS algorithm to greedily climb hills without taking unnecessary downhill noise steps.
The argument for using high noise p is that this provides the SLS algorithm with a powerful mechanism to
escape local (but non-global) optima [17]. Empirically � and depending on the problem instance, the SLS
algorithm, and its input parameters including noise level � an approximately optimal noise level p̂� can be
found. The di¢ culty of approximating the optimal noise p� [26] has lead to the development of adaptive
noise, in which p is not static but varies as the SLS algorithm runs [7, 14, 26]. However, noise adaptation
is still an active area of research and we believe the present work provides several key insights that should
bene�t further progress.
Our main contributions in this article are as follows. Based on the seminalWalkSAT architecture [44,45],

we introduce a simple but general SLS algorithm called SimpleSLS. SimpleSLS performs noisy steps with
probability p, and greedy steps with probability 1�p. We show that expected hitting times for SimpleSLS
are rational functions P (p)=Q(p), where P (p) and Q(p) are polynomials. This explicitly provides a functional

1

form corresponding to noise response curves previously only established empirically in the SLS literature
[7,8,14,16,26]. We also consider the use of polynomials and convex functions. Convexity is important because
local optimality implies global optimality, a dramatic simpli�cation compared to unrestricted optimization.
Rational functions as well as their special case polynomials can be used to analytically determine optimal
noise levels; the latter are used in experiments in this article.
Using Markov chain analysis, and in particular by analyzing expected hitting times for trap Markov

chains, we clearly show the impact of di¤erent settings of the noise parameter p when the di¢ culty of the
problem instance varies, a key concern in stochastic local search. Trap Markov chains are an idealized model
for how SLS gets trapped by local (but not global) optima in a search space, and how noise p impacts the
capability of SLS to escape such traps. Further, we show that optimal noise probability p� varies dramatically
depending on the problem instance. In particular, the optimal noise parameter varies from p� = 0 for easy
problem instances to p� close to 1 for hard problem instances.
We back up our analysis with empirical results using Bayesian networks (BNs), both synthetic and from

applications. BNs play a central role in a wide range of uncertainty reasoning applications including diagnosis,
probabilistic risk analysis, language understanding, intelligent data analysis, error correction coding, and
biological analysis. Many interesting computational BN problems, including MPE computation, are NP-
complete or harder [37,40,47], hence heuristic methods such as SLS are of interest. In this work we study the
problem of computing the most probable explanation (MPE) in Bayesian networks. We use an SLS algorithm
known as stochastic greedy search (SGS) to search for MPEs in BNs. SGS can simulate SimpleSLS and is
a �exible, operator-based SLS approach in which di¤erent initialization and search operators can easily be
investigated [27,30].
Our approach to generating synthetic BNs includes satis�ability (SAT) as a special case (see [40, 47]

for the reduction). Let V be the number of variables in propositional logic or the number of root nodes
in BNs. Further, let C be the number of clauses in propositional logic or the number of non-root nodes
in BNs. For V > 0, the ratio C=V is well-de�ned and has turned out to be useful in predicting inference
di¢ culty for randomly generated problem instances [33,34]. An easy-hard-easy pattern in inference di¢ culty
as a function of the C=V -ratio has been observed for SAT [34]. For BNs, an easy-hard-harder pattern has
been established when inference di¢ culty is measured in terms of upper bounds on minimal maximal clique
size (or treewidth) [29, 33]. Upper bounds on optimal clique tree size and optimal maximal clique size can
be computed using tree clustering [24]. In this article, we use the C=V -ratio directly to characterize the
di¢ culty of synthetic BNs for SLS.
There is a clear relationship between our Markov chain approach and observed SLS run times. We illus-

trate that our idealized trap Markov chain models are relevant to experiments with real problem instances.
For a few small problem instances we show complete search spaces and derive corresponding Markov chains.
With these in hand, we compare (i) bounding hitting time results derived from idealized trap Markov chain
models; (ii) analytical hitting time results derived from Markov chain models (which were created from real
problem instances along with the behavior of SimpleSLS); (iii) real observed SGS run times for the same
problem instances; and (iv) polynomial regression results for the SGS run times A key point relating
Markov chain models to classes of real problem instances is suggested by the following: Increasing problem
instance hardness as controlled by C=V -ratio corresponds, roughly speaking, to increasing the size of the trap
in a trap Markov chain. Consequently, mixtures of problem instances that are easy on average (small C=V
and small traps) should be solved by greedier (less noisy) SLS algorithms than mixtures of problem instances
that are hard on average (large C=V and large traps). In experiments with synthetic problem instances, we
indeed observe these patterns as C=V is varied. To complement our experiments with synthetic problems,
we also investigate BNs from applications while also using more advanced initialization and noise algorithms.
Here, we found that noise can sometimes have a rather minor impact on SLS performance while in other
cases the impact can be dramatic. Generally, the empirical results support our Markov chain-based analysis.
We believe this work is signi�cant for the following reasons. First, by using Markov chain hitting time

analysis and introducing an explicit noise parameter p, this research provides an improved understanding
of what role noise plays in stochastic local search. Such theoretical understanding has traditionally been
limited [14, 16, 44], even though there exists research based on Markov chains which explores the role of
traps and local maxima in SLS [15]. Second, while the experimental results of SLS are very impressive,
their empirical basis means that these algorithms are quite computationally intense to optimize [26]. We
believe that this work paves the way for improved approaches to optimize the noise level in stochastic local
search; optimization can take place in a more principled fashion once a better understanding of the role
of noise has been established. Third, we believe that Markov chain analysis and in particular expected
hitting times, and more generally stochastic process theory, has been under-utilized when researching SLS

2

algorithms. Hopefully, the impact of other parameters that describe problem instances and parameters that
control the SLS search processes can be analyzed in a similar way by utilizing techniques from stochastic
process theory.
The rest of this article is organized as follows. Preliminary concepts are introduced in Section 2. In

Section 3 we present a simple but easy-to-analyze SLS algorithm called SimpleSLS. Section 4 presents our
three Markov chain models of SimpleSLS, namely the exact, naive, and trap Markov chain models. Section
5 provides in-depth numerical analysis and discussion of examples of trap Markov chains and their expected
hitting times. In Section 6 we present general expected hitting time and run time results. Section 7 provides
empirical results using synthetic and application problem instances, speci�cally Bayesian networks, before
we conclude in Section 8.

2 Preliminaries

We assume that the reader is familiar with fundamental de�nitions and results from the areas of graph
theory, probability theory, and statistics; and in particular Markov chains [23] and Bayesian networks [39].
Some of the most pertinent concepts are brie�y reviewed in this section.
A direct and natural way to analyze an SLS algorithm�s operation on a problem instance is as a discrete

time Markov chain with a discrete state space, de�ned as follows.

De�nition 1 (Markov chain) A (discrete time, discrete state space) Markov chain fXn; n = 0; 1; 2; : : :g
is de�ned by a 3-tuple M = (S, V, P) where S = fs1, : : :, skg de�nes the set of k states while V = (�1,
. . . ,�k), a k-dimensional vector, de�nes the initial probability distribution. The conditional state transition
probabilities P can be characterized by means of a k � k matrix.

Only time-homogenous Markov chains will be considered here. Many of the Markov chain models dis-
cussed below, including the trap Markov chains introduced in Section 4.3, are random walks with so-called
boundary states fs1, skg and internal states fs2, : : :, sk�1g. Further, the noise level p acts as a parameter
in some of the Markov chain models we discuss in the following.
InM, some states O � S are of particular interest since they represent optimal states, and we introduce

the following de�nition.

De�nition 2 (SLS model) LetM = (S, V, P) be a Markov chain. Further, assume an objective function
f : S ! R and an optimal objective function value f� 2 R that de�nes optimal states O = fs j s 2 S and
f(s) = f�g. An SLS model is de�ned as a 2-tuple (M;O).

The objective function f and the optimal states O are independent of the SLS algorithm and its para-
meters. Note that neither M nor O are, in general, explicitly speci�ed. Rather, they are induced by the
objective function (or problem instance), the SLS algorithm, and the SLS algorithm�s parameter settings.
In fact, �nding an s� 2 O is the purpose of computation, and it is given implicitly by means of the objective
function f and the optimal objective function value f� 2 R. Without loss of generality our main focus is on
maximization problems in this article.
Consider an SLS model (M;O). A hitting time analysis of the Markov chain M gives the expected

number of steps needed to reach s� 2 O. Expected hitting times, to be introduced in De�nition 5, are based
on �rst passage times and their expectations, which we introduce now. In the following de�nition, Xj is an
arbitrary random variable among the random variables fXn; n = 0; 1; 2; : : :g of a Markov chain.

De�nition 3 (First passage time) Consider an SLS model (M;O) and let si 2 S where S isM�s states.
The �rst passage time T into s� 2 O, where jOj = 1, is given by T = min(j � 0 : Xj = s�g. The expected
value of T , given initial state X0 = si, is de�ned as

mi := E(T j X0 = si):

In this article, mi is sometimes a function of noise p, in which case we saymi(p). Note also that De�nition
3 can easily be generalized to cover passage time into multiple optimal states, jOj > 1, however to simplify
the exposition we generally focus on the one-state case here.
We often consider problem instances represented as bitstrings of length n, b 2 f0; 1gn, in which case

s� = b� 2 f0; 1gn. We are interested in maximization: �nding a b� 2 O such that f(b�) � f(b) for all
b 2 f0; 1gn. The following de�nition formally introduces the useful concept of unitation as summing over a
bitstring.

3

De�nition 4 (Unitation) Let b = b1b2:::bn 2 f0; 1gn be a bitstring of length n. The number of ones (or
unitation) of b = b1 : : : bn is de�ned as u(b) =

Pn
i=1 bi:

Counting the number of ones is, after an easy transformation of the search space, equivalent to counting
the number of correct bits. The number of correct bits is the number of bits that are equal between b� and
the current state of SLS search c. More formally, let b�, b, c, d,2 f0; 1gn. In order to normalize the search
space, one can use the transformations b := (b� xor c) and d := �b where xor denotes exclusive or and �b
denotes the bit-wise inversion of b . Now, take u(d) in this transformed search space in order to obtain the
number of correct bits; clearly d� = 1:::1. To simplify notation, we often gloss over the transformations, and
say that b� = 1:::1 without loss of generality [6]. See Figure 7 for concrete examples.
Using conditional expectations, one obtains from De�nition 3 the following well-known result.

Theorem 5 (Expected hitting time) Let M be a Markov chain with state space S = fs1, : : :, skg and
�rst passage time T (into sk). The expected hitting time h is then

h :=
kX
i=1

E(T j X0 = i) Pr(X0 = i) =
kX
i=1

mi�i: (1)

Expected hitting time can be used to analyze the expected time to reach an optimal state, and is therefore
closely related to the observed run time for an SLS algorithm. In the context of SLS, the hitting time h
is with respect to some state in O and depends on the algorithm�s input parameters including the problem
instance. Our main interest in this article is expected hitting time as a function of noise p. Typically, we
therefore get h(p) instead of just h (as in (1)), and reserve the short form �expected hitting time�for h(p).
By studying h(p) and varying p along the x-axis in graphs, we obtain expected hitting time curves that are
counterparts to experimental noise response curves. Clearly, one would like to �nd SLS parameters such
that the minimal expected hitting time h� is obtained. Often, the search for minimal expected hitting time
h� has an empirical component and the notation ĥ� may be used.
In the experimental part of this work we will focus on an SLS approach to computing the most probable

explanation [22, 27, 30] in Bayesian networks (BNs). This problem is interesting in its own right and also
generalizes satis�ability [40, 47]. BN nodes can be continuous, however we will here restrict ourselves to
discrete BN nodes.

De�nition 6 (Bayesian network) A Bayesian network is a tuple � = (X, E, P), where (X, E) is a
DAG with an associated set of conditional probability distributions P = fPr(X1 j �X1), : : : , Pr(Xn j �Xn)g.
Here, Pr(Xi j �Xi) is the conditional probability distribution for Xi 2X. Let �Xi represent the instantiation
of the parents �Xi

of Xi. The independence assumptions encoded in (X, E) imply the joint probability
distribution

Pr(x) = Pr(x1, : : : , xn) = Pr(X1 = x1, : : : , Xn = xn) =
nY
i=1

Pr(xi j �Xi): (2)

A BN may be provided with observations or evidence by setting or clamping m nodes fO1; : : : ; Omg �X
to known states o = fO1 = o1, : : :, Om = om g = fo1, : : :, omg. These nodes are called observation nodes
and need to be considered in explanations, de�ned as follows.

De�nition 7 (Explanation) Consider a BN � = (X, E, P) with X = fX1, : : :, Xng and observations
o = fo1, : : :,omg for m < n. An explanation x assigns states to all non-evidence nodes fXm+1, : : :, Xng: x
= fxm+1, : : :, xng = fXm+1 = xm+1, : : :, Xn = xng.
Among all explanations in a BN, the u most probable ones are of particular interest.

De�nition 8 (Most probable explanation (MPE)) Let x range over all explanations in a BN �. Find-
ing a most probable explanation (MPE) in � is the problem of computing an explanation x� such that
Pr (x�) � Pr (x). The u most probable explanations is X� = fx�1; : : : ;x�ug where Pr (x�) = Pr (x�1) =
� � � = Pr (x�u) and Pr (x�i) � Pr (x) for 1 � i � u.
As is common, we compute just one MPE x� 2X� even when multiple MPEs exist in a BN. Computation

of the M most probable explanations, for M � 1 and where explanations do not have the same probability,
is a generalization that has also been investigated [50]. Following Pearl, we sometimes denote computing
an MPE as belief revision, while computing the marginal distribution over a BN node is also denoted belief
updating [39]. Many of the computational BN problems of interest are hard. Exact MPE computation is
NP-hard [47] and the problem of relative approximation of an MPE also been shown NP-hard [1]. Belief
updating is computationally hard also [4, 40].

4

3 Stochastic Local Search

We discuss a simpli�ed variant of SLS, SimpleSLS, based on the seminalWalkSAT architecture [16,44,45].
SimpleSLS is not intended to be competitive with state-of-the-art SLS algorithms, which often are tailored
to the domain and problem instances at hand [18]. Rather, SimpleSLS is intended to enable analysis and
capture what is common to SLS algorithms based on WalkSAT, in particular with respect to their noisy
search components.
The SimpleSLS algorithm takes as input these parameters: n - bitstring length; p - noise probability;

f - an objective function used to evaluate f(b) where b = b1b2:::bn 2 f0; 1gn is a bit string of length n;
f� - optimum value of f ; MAX-FLIPS - the number of �ips before restart; and �nally MAX-TRIES - the
number of restarts before termination. SimpleSLS iteratively takes search steps, which are either greedy
or noisy as further discussed below.
SimpleSLS maintains a current estimate of b�, namely b̂

�
, as well as the current state b. To initialize

b, SimpleSLS puts bi := 0 with Pr (1=2) and bi := 1 with Pr (1=2) for all 1 � i � n. Such initialization
uniformly at random is common in SLS algorithms [18]. SimpleSLS initializes b̂

�
in the same manner.

Then, one-bit �ips are repeatedly made to b until success or restart, described below, takes place. A one-bit
�ip means that b�s i-th bit, where 1 � i � n, is picked and then �ipped. Suppose the current bitstring is b =
b1b2:::bi:::bn�1bn. Then a �ip is to set b0i := �bi and the new bitstring b

0 is formed as b0 := b1b2:::�bi:::bn�1bn
and then setting b := b0. If f(b) � f(b̂�) then b̂� := b. Further, if f(b̂�) = f� then SimpleSLS terminates
successfully.
The way in which the i-th bit in b is picked depends on the search operator or algorithm used. A random

variable O is now introduced, representing the random selection of which operator to apply next. To keep
our analysis simple we assume exactly two local search operators or operator types, oG (greedy) and oN
(noisy) and hence Pr(O = oG) + Pr(O = oN) = 1.1 The SimpleSLS algorithm repeatedly instantiates the
random variable O by randomly picking one of the two operators oG and oN as follows:

Greedy operator O = oG: With probability Pr(O = oG) = 1 � p, a greedy step is made from b to b0,
maximizing objective function increase from f(b) to f(b0). If there is tie between k candidate bitstrings
fb01; :::; b0kg, the algorithm picks one of them uniformly at random. If no f(b0) � f(b), it puts b0 := b.

Noisy operator O = oN : With probability Pr(O = oN) = p, the algorithm makes a noise step as follows.
First, an integer 1 � i � n is picked uniformly at random. This i-th bit is then �ipped, forming b0.

The SimpleSLS algorithm iteratively �ips bits until f� is reached or MAX-FLIPS �ips have been per-
formed. Once MAX-FLIPS �ips have been done, a new try is started, and the process continues until
MAX-TRIES has been reached. The approach is closely related to WalkSAT [44, 45], in particular its
random noise variant.
In our analysis here MAX-TRIES = MAX-FLIPS =1 is used; we do vary MAX-FLIPS in some of our

experiments. We assume a Las Vegas algorithm that is guaranteed to eventually terminate with b̂
�
= b�.

This latter assumption simpli�es our analysis and exposition since we need only be concerned with a randomly
varying run time T . One can of course also �x the run time and let the approximated output b̂

�
be a random

variable; the analysis is then di¤erent and we shall not follow this route in this article.
Our approach is closely related to previous stochastic local search (SLS) algorithms for satis�ability

[11, 16, 18, 43, 45, 46] and Bayesian network problems [22, 27, 30, 36, 37]. It is somewhat related to previous
research on stochastic simulation and guided local search. Stochastic simulation, which can be used to
compute MPEs [39], is essentially Gibbs sampling in Bayesian networks. Even though the Gibbs sampler
in many respects is general, it is quite di¤erent from most SLS approaches in that it typically operates
in cycles [25]. A cyclic Gibbs sampler iterates systematically over all non-evidence nodes in a BN. SLS
algorithms, on the other hand, are generally more opportunistic and do not operate on such �xed schedules.
Stochastic simulation has been shown to be outperformed by the SLS approach of combining greedy and
noisy search [22], and we do not investigate stochastic simulation in this article. There is also another class
of local search algorithms, called guided local search [20, 35], which emphasizes changing the cost function
rather than employing noise. Guided local search algorithms such as GLS [35] and GLS+ [20] are clearly
very interesting, however our focus in this article is on stochastic local search algorithms and their analysis.

1 In the SGS system, used for experimentation in Section 7, oN is implemented by the NU operator and oG is implemented
by either the BM operator or the GM operator.

5

u(b)=0

u(b)=5

u(b)=4

u(b)=1

u(b)=2

u(b)=3

00000

11111

0111110111110111110111110

10000 01000 00100 00010 00001

11000 10100 00101 0001101100 10010 01010 10001 01001 00110

11100 01101 0011111010 10110 10101 1001101110 0101111001

u(b)=0

u(b)=5

u(b)=4

u(b)=1

u(b)=2

u(b)=3

00000

11111

0111110111110111110111110

10000 01000 00100 00010 00001

11000 10100 00101 0001101100 10010 01010 10001 01001 00110

11100 01101 0011111010 10110 10101 1001101110 0101111001

Figure 1: The hypercube over all 5-bit bitstrings b 2 f0,1g5. Neighboring bitstrings, bitstrings in which one
bit di¤ers, have an edge between them. The unitation u(b) for all bitstrings at the same level is shown to
the left.

4 Markov Chain Models of Stochastic Local Search

Important aspects of the behavior of many stochastic local search (SLS) algorithms can be represented by
means of discrete-time Markov chains. In Section 4.1 we discuss an exact Markov chain analysis of SLS
along with its pros and cons. We then go on to provide approximate models and results. In Section 4.2
a simple 3-state Markov chain model is discussed, while in Section 4.3 a more general model, trap Markov
chains, is developed.
Readers who �nd the naive and trap Markov chain models too restrictive may want to skim Section 4.2,

Section 4.3, and Section 5, and instead consider our more general analysis in Section 4.1 and Section 6 as
well as experimental results in Section 7.

4.1 Exact Markov Chain Analysis

Clearly, key aspects of the operation of SimpleSLS and similar SLS algorithms on a speci�c problem instance
can be formalized as simulation of a Markov chain. The structure of the underlying exact Markov chain is
that of a hypercube, where each hypercube state b represents a bitstring. A state b 2 f0; 1gn in such a
Markov chain has n neighbors, namely those bitstrings one �ip away. Stated formally, b0 is a neighbor to b
if b0 can be obtained by �ipping one of b�s bits.

De�nition 9 (Neighborhood) Let b be a bitstring of length n. b�s neighborhood n(b), strict neighborhood
n0(b), and non-neighborhood �n(b) are de�ned as follows:

n(b) =

(
c 2 f0; 1gn

�����
nX
i=1

jbi � cij � 1
)

n0(b) = n(b)� fbg
�n(b) = f0; 1gn � n(b).

The following Markov chain model is introduced in order to re�ect the performance of SimpleSLS as
stated formally in Theorem 11.

6

De�nition 10 (Exact Markov chain model) The exact Markov chain model M of SimpleSLS has
states S = fs0, s1, ...g = fb j b 2 f0; 1gng and an initial probability distribution V with Pr(X0 = si) = 1=2n
for 1 � i � 2n. The transition probability matrix P is a stochastic matrix given by

Pr(Xj+1 = bj+1 j Xj = bj) = 0 if bj+1 2 �n(bj) (3)

Pr(Xj+1 = bj+1 j Xj = bj) � 0 if bj+1 2 n(bj). (4)

Theorem 11 SimpleSLS simulates an exact Markov chain model up to MAX-FLIPS �ips.

Proof. Obviously, S and V are as stated and we now consider P. Clearly, SimpleSLS can be regarded as a
stochastic process fXi; i = 0; 1; 2; :::g over the discrete state space S = fb j b 2 f0; 1gng. Further, for fewer
than MAX-FLIPS �ips, the next state bj+1 is independent of the past given the current state bj , therefore

Pr(Xj+1 = bj+1 j X0 = b0; :::; Xj = bj) = Pr(Xj+1 = bj+1 j Xj = bj);

which de�nes a Markov chain. For the transition probabilities P there are by construction two SimpleSLS
operators to consider, namely oG and oN . Since the number of �ips is less than MAX-FLIPS we obtain

Pr(Xj+1 = bj+1 j Xj = bj) =
�
Pr(Xj+1 = bj+1 j Xj = bj , Oj = oG) Pr(Oj = oG) if oG picked
Pr(Xj+1 = bj+1 j Xj = bj , Oj = oN) Pr(Oj = oN) if oN picked

:

In both cases, conditions (3) and (4) are obeyed and the theorem follows.
Here is an example; see De�nition 4 for a formal introduction of unitation u(b).

Example 12 An example hypercube representing an exact Markov chain model of a 5-bit SLS search space
is shown in Figure 1.

We now consider a state that is a local minimum. In such a case the neighboring states n0(b) must
have the same or higher objective function value, and since without loss of generality we have assumed that
SimpleSLS performs maximization, the following result is obtained.

Lemma 13 If the current state bj in SimpleSLS is a local minimum, the next state bj+1 will always be a
state in the strict neighborhood: bj+1 2 n0(bj).

Proof. Suppose an arbitrary candidate for next state bj+1 is denoted b0: b0 2 n(bj). SimpleSLS applies
one of two operators, O = oG (greedy) or O = oN (noisy). If O = oN , a bit is always �ipped such that
bj+1 6= bj . If O = oG, bj+1 := bj only if no f(b0) � f(bj), where b0 2 n0(b), exists. However, this is clearly
not the case here since bj by assumption is a local minimum and thus f(b0) � f(bj) for all b0 2 n0(bj).
Since SimpleSLS searches in a state space de�ned by an n-dimensional hypercube, one might be tempted

to also perform all analysis in this space. However, such exactness comes at a steep price. Since the size of P
is jf0; 1gnj � jf0; 1gnj = 2n+1 and the size of V is jf0; 1gnj = 2n, the speci�cation ofM becomes impossibly
large even for moderately sized problem instances. For small n, exact Markov chain analysis is feasible. For
large n, exact Markov chain analysis may be infeasible.
In the following we provide Markov chain analysis results, similar to above, however they are approximate

since we operate on smaller state spaces compared to the exact space traversed by SLS algorithms such as
SimpleSLS.

4.2 Naive Markov Chain Analysis

Here, we are interested in an abstract Markov chain model of SLS algorithms, and introduce the following
simple random walk model, which constitutes a stepping stone for the trap Markov chains in Section 4.3.

De�nition 14 (Naive Markov chain model) The naive Markov chain model (M, O) has Markov chain
M with states S = fs0, s1, s2g = f0, 1, 2g, initial probability distribution V = (�0; �1; �2), transition
probability matrix

P =

24 1 0 0
1� b� c b c

0 a 1� a

35 ; (5)

and O = fs0g = f0g.

7

Naïve Markov chain
model: General

0 1 2
a

c1­b­c

1­a1 b

0 1 2
1

1000
1

=a

100
1

=c

1000
999

10
7

=b

100
29

Naïve Markov chain
model: Example

Naïve Markov chain
model: General

0 1 2
a

c1­b­c

1­a1 b
0 1 2

a

c1­b­c

1­a1 b

0 1 2
1

1000
1

=a

100
1

=c

1000
999

10
7

=b

100
29

0 1 2
1

1000
1

=a

100
1

=c

1000
999

10
7

=b

100
29

Naïve Markov chain
model: Example

Figure 2: A naive Markov chain model (top) with parameters a, b, and c as well as an example of parameter
settings (bottom). This is a top-down model, in which each state represents multiple states in the underlying
exact Markov chain model of the SLS search process.

The naive Markov chain model, along with an example, is illustrated in Figure 2. The values of a, b, and
c as well as the values of the initial probabilities �0, �1, and �2 all depend on the problem instance and SLS
algorithm at hand. In (5), s0 = 0 represents the optimum O; s1 = 1 represents the search space close to
s0 = 0, and s2 = 2 represents the search space distant from s0 = 0. Distance is measured using Hamming
distance d(b1, b2) between two bitstrings, b1; b2 2 f0; 1gn. There is also a threshold 0 � z < n. Formally,
s0 represents fb�g, s1 represents fb j b 2 f0; 1gn, 0 < d(b; b�) � zg, and s2 represents fb j b 2 f0; 1gn,
d(b; b�) > zg. The state s2 = 2 can be used to represent search space traps [11, 15], a topic we will discuss
in more detail in Section 4.3. The states s0 = 0 and s1 = 1 represent the part of the search space where a
strong SLS initialization algorithm will reliably start search, leading to a low number of �ips before reaching
O, while s2 = 2 gives a high number of �ips. Suppose that

Pr(Xi+1 = 1 j Xi = 1) = b < Pr(Xi+1 = 2 j Xi = 2) = 1� a:

Here, the probability b of staying at s1, in other words close to s0 while not transitioning to the optimum
state s0 or further away to s2, is smaller than the probability 1� a of staying at s2, distant from optimum.
In other words, once SimpleSLS is close to optimum it may be quite likely to �nd optimum, while on the
other hand if SimpleSLS is far from optimum it may be likely to stay far away. These concepts are re�ected
in the numerical example in Figure 2.
Expected times for �rst entering the optimum state s0 = 0 is given by our following result.

Lemma 15 In the naive Markov chain model, suppose that a (b+ c� 1) 6= 0 and b 6= 1. Then, the �rst
passage times m0, m1, and m2 are

m0 = 0;
m1 = � a+c

a(b+c�1)
m2 = � a�b+1

a(b+c�1) :

Proof. The fact that m0 = 0 is obvious. A hitting time analysis of the Markov chain (5) gives these two
simultaneous equations:

m1 = 1 + b�m1 + c�m2

m2 = 1 + a�m1 + (1� a)�m2;

which under the assumption a (b+ c� 1) 6= 0 has the above solutions.
Here is an illustration of the potentially dramatic di¤erence between SLS starting in state s1 = 1 (giving

�rst passage time m1) versus in state s2 = 2 (giving �rst passage time m2).

Example 16 Let, in (5), a = 1=1000, b = 7=10, and c = 1=100. Using Lemma 15 we obtain

m1 = � a+c
a(b+c�1) = 37:93

m2 = � a�b+1
a(b+c�1) = 1038:

8

Suppose now that we are able to increase the probability of �good� jumps from state s2 = 2 (distant
from optimum) to state s1 = 1 (close to optimum) to a = 1=100, while only increasing the probability of
�bad�jumps from state s1 = 1 to state s2 = 2 to c = 1=50. These changes to a and c may for example be
implemented by increasing the SimpleSLS noise p, giving the following result.

Example 17 Let, in (5), a = 1=100, b = 7=10, and c = 1=50. Using Lemma 15 again gives

m1 = � a+c
a(b+c�1) = 10:71

m2 = � a�b+1
a(b+c�1) = 110:7:

In this case, we see improvements for both m1 and m2 compared to Example 16; relatively speaking the
almost 10-fold reduction in passage time m2 is most signi�cant.
Bene�ts of the naive Markov chain model include its simplicity and ease of speci�cation. This again leads

to improved understanding of SLS through the calculation of passage times, extending previous research [15].
However, this naive model is perhaps too simple to capture several important facets of SLS algorithms, in
particular there is no direct representation of noise probability p. We now turn to more realistic Markov
chain models, trap Markov chain models, in which p is explicitly represented and there is an attempt to
strike a balance between the state space sizes of exact and naive Markov chain models.

4.3 Trap Markov Chain Analysis

In the following, we continue to use Markov chains but introduce a few extensions, namely a noise parameter
p, a variable sub-string length ` � n, and an approach to vary problem di¢ culty at a higher abstraction level
than for the naive Markov chain model. To make the size ofM tractable even for large problem instances,
we focus on objective functions f in which it is reasonable to count the number of correct bits in the current
bitstring b compared to the optimum b�.
We introduce an approach and a class of Markov chains inspired by deceptive trap functions [6]. Trap

functions are related to search space traps, which are portions of the search space that are attractive to SLS
but do not contain optima [11,15]. In deceptive trap functions, only the number of 1�s (or the unitation) and
not their positions determine objective function values. In deceptive trap functions over bitstrings of length
` = n, there is a local deceptive optimum at 0 representing b = 0:::0, a global optimum at ` representing
b� = 1:::1, and a slope-change location at z.

De�nition 18 (Trap function) A trap function g(x; `; z) (abbreviated g(x)) of length ` with slope-change
location z 2 f0, : : :, `�1g is a function with domain f0, : : :, `g � N where g(x) > g(x+1) for 0 � x � z�1
and g(x) < g(x+ 1) for z � x � `� 1. There is a unique global optimum g� = g(`) and g(z + 1) > g(z � 1)
for z > 0.

Intuitively, a trap function is such that for x < z, an SLS algorithm such as SimpleSLS will greedily
(using oG) move towards the local optimum x = 0, representing trapping in the part of search space dominated
by local maxima. For x � z, SimpleSLS will greedily (again using oG) move towards the global optimum
at x = `, representing search in the part of the search space dominated by the global optimum b�. The size
of the domain as well as the placement of the slope-change parameter z determine the di¢ culty of the trap
function for SLS.
Here is an example trap function related to SAT. Note that this example is a simpli�cation compared to

actual SAT problem instances, which we return to in Section 7.

Example 19 (Easy SAT instance) Consider a conjunctive normal form (CNF) formula with V = 5 vari-
ables and C = 20 clauses. Further, assume that the formula has exactly one satisfying assignment and that
the number of satis�ed clauses g varies from 15 to 20 as follows: g(0) = 16, g(1) = 15, g(2) = 17, g(3) = 18,
g(4) = 19, and g(5) = 20. This is a trap function with slope-change location z = 1, since g(0) > g(1), g(5)
> g(4) > g(3) > g(2) > g(1), g(2) > g(0), and g� = g(5).

Example 19 is illustrated in Figure 3 along with other examples of varying di¢ culty. A key point here is
that moving the slope-change location z from the left to the right corresponds to increasing problem instance
hardness. Intuitively, easy problem instances (with slope-change location close to b = 0:::0) should be solved
by a greedier algorithm than a hard problem instance (with slope-change location close to b = 11:::1). Two
complete search spaces are shown in Figure 4.
We assume that SLS searches over bitstrings rather than integers (as used in De�nition 18), hence we

introduce the following de�nition.

9

Very Easy: z = 0

13
14
15
16
17
18
19
20
21

0 1 2 3 4 5

Num. of correct variable assignments

N
um

. o
f s

at
. c

la
us

es

Easy: z = 1

13
14
15
16
17
18
19
20
21

0 1 2 3 4 5

Num. of correct variable assignments

Nu
m

. o
f s

at
. c

la
us

es

Slightly Easy: z = 2

13
14
15
16
17
18
19
20
21

0 1 2 3 4 5

Num. of correct variable assignments

N
um

. o
f s

at
. c

la
us

es

Slightly Hard: z = 3

13
14
15
16
17
18
19
20
21

0 1 2 3 4 5

Num. of correct variable assignments

N
um

. o
f s

at
. c

la
us

es

Hard: z = 4

13
14
15
16
17
18
19
20
21

0 1 2 3 4 5

Num. of correct variable assignments
Nu

m
. o

f s
at

. c
la

us
es

Figure 3: Trap functions g(x; `; z) = g(x; 5; z) based on the satis�ability problem (3SAT) with V = 5 variables
and C = 20 clauses, assuming one satisfying assignment. We consider �ve hypothetical problem instances,
ranging from very easy (with slope-change location z = 0) to hard (where z = 4). For an assignment to all
V = 5 variables, the number of correct assignments ranges from x = 0 to x = 5 as shown on the x-axis. The
number of satis�ed clauses is shown on the y-axis. The complete search spaces for Very Easy and Hard are
shown in Figure 4.

De�nition 20 (Binary trap function) Let b 2 f0; 1g` be a bitstring and let g(x; `; z) be a trap function as
introduced in De�nition 18. Then f(b; `; z) := g(u(b); `; z), abbreviated f(b), de�nes a binary trap function
with parameters ` and z.

The concept of trap functions de�ned over bitstrings might seem somewhat abstract, but it can be used
to represent critical aspects of how SLS algorithms get trapped when applied to NP-hard problems such as
SAT and MPE. For SAT, a bitstring b 2 f0; 1g` represents a truth assignment to all ` = n variables in a
CNF formula, for MPE it represents an explanation over ` = n binary nodes.

De�nition 21 (Trap) Let c 2 f0; 1g` be a bitstring and let b� 2 f0; 1g` be an optimal bitstring. A greedy
neighbor g 2 n(c) is a neighbor that is reachable by a greedy SimpleSLS step. Then c is a trap state
(bitstring) if all greedy steps from c increase the distance to all optima: d(g; b�) > d(c; b�) for all g and b�.
The search space�s trap is de�ned as T =

�
c is trap state j c 2 f0; 1g`

	
.

Our concept of trap is related to search space traps [11,15] as well as search space reachability analysis,
where states from which a solution is not reachable are determined [51].
It is easy to show that the trap size of a binary trap function is as follows.

Lemma 22 Let f(b; `; z) be a binary trap function. The trap size jT j of f is given by

jT j =
�

0 if z = oPz�1
i=0

�
`
i

�
if z � 1 : (6)

The following result holds in general, where Tmax is the largest trap possible over f0; 1gn and Tmin is the
smallest trap possible.

Lemma 23 The maximal trap size jTmaxj over f0; 1gn is given by jTmaxj = 2n � n � 1; the minimal trap
size is jTminj = 0.

Proof. In the worst case there is only one optimum b� 2 O. Clearly, n(b�) can not be part of the trap,
n(b�) 6� T max, and since jn(b�)j = n+ 1 we obtain the desired result. jTminj = 0 is obvious.

10

Easiest trap problem instance (Very Easy)

15

20

1919191919

16 16 16 16 16

17 17 17 1717 17 17 17 17 17

18 18 1818 18 18 1818 1818

15

20

1919191919

16 16 16 16 16

17 17 17 1717 17 17 17 17 17

18 18 1818 18 18 1818 1818

Hardest trap problem instance (Hard)

19

20

1515151515

18 18 18 18 18

17 17 17 1717 17 17 17 17 17

16 16 1616 16 16 1616 1616

19

20

1515151515

18 18 18 18 18

17 17 17 1717 17 17 17 17 17

16 16 1616 16 16 1616 1616

Figure 4: The complete search spaces for two trap functions f(b; 5; 0) and f(b; 5; 4) representing hypothetical
SAT problem instances, namely the easiest and hardest ones according to the trap function de�nition. The
number of satis�ed clauses is shown for each point in the search spaces, which are laid out as Figure 1.

Given the above result, f(b; `; 0) and f(b; `; ` � 1) play distinguished roles as bounding binary trap
functions: f(b; `; 0) is the easiest trap function over f0; 1g` and in fact achieves jTminj = 0, while f(b; `; `�1)
is the hardest trap function over f0; 1g`, achieving jTmaxj = 2` � `� 1 as follows from (6).
A trap Markov chain is induced by a problem instance (such as the ones in Figure 3) and an SLS algorithm,

speci�cally SimpleSLS, along with its input parameters including noise parameter p. Given a trap functions
g(x; `; z) we construct a trap Markov chain (S, V, P) such that jSj = `+ 1. When constructing P, we take
into account the underlying binary trap function f(b; `; z), and also map the slope-change location z into
a slope-change state. The following de�nition of a trap Markov chain (TMC) describes the performance of
SimpleSLS on a trap function as stated formally in Theorem 25.

De�nition 24 (Trap Markov chain) An `-bit trap Markov chain with change state z and noise parameter
p, abbreviated as TMC(p; `, z), is de�ned as follows. It has ` + 1 states S = f0, : : :, `g and the initial
distribution V is de�ned, for x 2 S, as

Pr(X1 = x) =

�
`
x

�
2`
: (7)

The state transition probabilities of P are for Xi = ` de�ned as

Pr(Xi+1 = ` j Xi = `) = 1� p
Pr(Xi+1 = `� 1 j Xi = `) = p;

and for Xi = 0, when z > 0, de�ned as

Pr(Xi+1 = 0 j Xi = 0) = 1� p
Pr(Xi+1 = 1 j Xi = 0) = p;

while Pr(Xi+1 = 1 j Xi = 0) = 1 when z = 0. For internal states Xi 6= 0 and Xi 6= ` we have

Pr(Xi+1 = x+ 1 j Xi = x) =

�
`�x
` p for 1 � x � z � 1

1� x
` p for z � x � `� 1

Pr(Xi+1 = x� 1 j Xi = x) =

�
1� `�x

` p for 1 � x � z � 1
x
` p for z � x � `� 1

with Pr(Xi+1 = y j Xi = x) = 0 for all x and y not listed above.

11

We emphasize that trap Markov chains (TMCs) are idealized models. Quantitatively, the purpose of
TMCs is to provide an interesting range of expected hitting times h(p) including bounding cases (for examples
see the lower bound Very Easy h5;0(p) and the upper bound Hard h5;4(p) in Section 5.1). Qualitatively, the
purpose of TMCs is to display di¤erent shapes of expected hitting time curves, ranging from ones that are
monotonically increasing with p (and where p = 0 is the optimal noise level) to ones with a decreasing-
increasing pattern and optimal noise levels that increase with the value of the slope-change state z. One
should not expect to �nd real-world models of non-trivial size that exactly match TMCs, and our intention is
not to �t real SLS behavior to TMCs. For results showing that these idealized models aid in the understanding
of experiments with real problem instances, we refer to Section 7.1.
Examples of trap Markov chains are presented in Section 5. The reason for using the terminology �trap

Markov chain�in De�nition 24 should become clear with the following result, where we formally state how
trap functions are processed by SimpleSLS.

Theorem 25 (Trap Markov chain) Let f(b; `; z) be an `-bit binary trap function with slope-change lo-
cation z. If f is given as input to SimpleSLS along with noise probability p, then a trap Markov chain
TMC(p; `, z) is simulated up to MAX-FLIPS �ips.

Proof. Results for the boundary states ` and 0 follow easily with the exception of z = 0. For z = 0, Lemma
13 applies with bj = 0:::0 and hence Pr(Xi+1 = 1 j Xi = 0) = 1. We now turn to the internal states
0 < x < `. First, consider Pr(Xi+1 = x + 1 j Xi = x). Conditioning on SimpleSLS operators oN and oG
and using the law of total probability gives

Pr(Xi+1 = x+ 1 j Xi = x) = Pr(Xi+1 = x+ 1 j Xi = x;Oi = oN) Pr(Oi = oN)
+ Pr(Xi+1 = x+ 1 j Xi = x;Oi = oG) Pr(Oi = oG):

There are two cases to consider, namely Case (i) 0 < x < z and Case (ii) z � x < `. Case (i): Suppose
that 0 < x < z. In this case g(x + 1) < g(x � 1), which means that SimpleSLS only moves from x to
x + 1 in case of a noise operation oN , in other words Pr(Xi+1 = x + 1 j Xi = x;Oi = oG) = 0 while
Pr(Xi+1 = x+ 1 j Xi = x;Oi = oN) > 0. Thus, we obtain

Pr(Xi+1 = x+ 1 j Xi = x) = Pr(Xi+1 = x+ 1 j Xi = x;Oi = oN) Pr(Oi = oN):

Since Pr(Oi = oN) = p and Pr(Xi+1 = x+ 1 j Xi = x;Oi = oN) = (`� x)=`, we get

Pr(Xi+1 = x+ 1 j Xi = x) =
`� x
`
p;

which by law of total probability and the fact that we have a random walk without internal self-loops gives

Pr(Xi+1 = x� 1 j Xi = x) = 1�
`� x
`
p:

Case (ii): Next, suppose that z � x < `. In this case g(x+1) > g(x� 1). The derivation is similar to above,
resulting in

Pr(Xi+1 = x� 1 j Xi = x) =
x

`
p

Pr(Xi+1 = x+ 1 j Xi = x) = 1� x
`
p;

thus concluding the proof.
Trap Markov chains are related to the naive Markov chain model in Section 4.2 as well as the so-called

simple and branched Markov chain models introduced by Hoos [15]. The simple and branched Markov chain
models capture similar phenomena, but our trap Markov chains have a few novel and important features.
First, a trap Markov chain TMC(p; `, z) is parametrized with a noise parameter p, which is essential when
analyzing the impact of noise on SLS. Second, while it is based on empirical considerations, the trap Markov
chain is an analytically derived model (see above as well as earlier work [6]). Markov chains have also been
used in the analysis of genetic and evolutionary algorithms [3, 9, 12, 48]. Generally, this analysis emphasizes
population-level e¤ects and is quite di¤erent from our analysis in this article. In particular, we do not know
of any analysis of genetic or evolutionary algorithms that includes noise level p as an explicit parameter,.
Our approach allows, for example, for the derivation of closed form solutions for expected hitting times which
is de�ned as follows.

12

Easy
z = 1

0 1 2 3 4 5
p 4p/5 1­4p/51­3p/51­2p/5

1­4p/5 4p/53p/52p/5 p 1­p1­p

0 1 2 3 4 5

p 4p/5 1­4p/51­3p/53p/5

1­4p/5 4p/53p/51­3p/5 p 1­p1­p

Very
Easy
z = 0

Slightly
Easy
z = 2

Slightly
Hard
z = 3

Hard
z = 4

0 1 2 3 4 5
p 1­p/5 1­4p/51­3p/51­2p/5

p/5 4p/53p/52p/5 p 1­p1­p

0 1 2 3 4 5

p 4p/5 1­4p/52p/53p/5

1­4p/5 4p/51­2p/51­3p/5 p 1­p1­p

0 1 2 3 4 5
1 1­p/5 1­4p/51­3p/51­2p/5

p/5 4p/53p/52p/5 p 1­p0

Easy
z = 1

0 1 2 3 4 5
p 4p/5 1­4p/51­3p/51­2p/5

1­4p/5 4p/53p/52p/5 p 1­p1­p

0 1 2 3 4 5
p 4p/5 1­4p/51­3p/51­2p/5p 4p/5 1­4p/51­3p/51­2p/5

1­4p/5 4p/53p/52p/5 p1­4p/5 4p/53p/52p/5 p 1­p1­p

0 1 2 3 4 5

p 4p/5 1­4p/51­3p/53p/5

1­4p/5 4p/53p/51­3p/5 p 1­p1­p

0 1 2 3 4 5

p 4p/5 1­4p/51­3p/53p/5

1­4p/5 4p/53p/51­3p/5 p 1­p1­p

Very
Easy
z = 0

Slightly
Easy
z = 2

Slightly
Hard
z = 3

Hard
z = 4

0 1 2 3 4 5
p 1­p/5 1­4p/51­3p/51­2p/5

p/5 4p/53p/52p/5 p 1­p1­p

0 1 2 3 4 5
p 1­p/5 1­4p/51­3p/51­2p/5

p/5 4p/53p/52p/5 p
0 1 2 3 4 5

p 1­p/5 1­4p/51­3p/51­2p/5p 1­p/5 1­4p/51­3p/51­2p/5

p/5 4p/53p/52p/5 pp/5 4p/53p/52p/5 p 1­p1­p

0 1 2 3 4 5

p 4p/5 1­4p/52p/53p/5

1­4p/5 4p/51­2p/51­3p/5 p 1­p1­p
0 1 2 3 4 5

p 4p/5 1­4p/52p/53p/5

1­4p/5 4p/51­2p/51­3p/5 p 1­p1­p

0 1 2 3 4 5
1 1­p/5 1­4p/51­3p/51­2p/5

p/5 4p/53p/52p/5 p 1­p0

0 1 2 3 4 5
1 1­p/5 1­4p/51­3p/51­2p/51 1­p/5 1­4p/51­3p/51­2p/5

p/5 4p/53p/52p/5 pp/5 4p/53p/52p/5 p 1­p0

Figure 5: Trap Markov chain models TMC(p; 5, z) for bitstrings of length ` = 5, and where the slope-change
state z is colored and varies from z = 0 (at the bottom) to z = 4 (at the top). Each of these trap Markov
chain models represents the combined e¤ect of a problem instance (see Figure 3) and SimpleSLS. These are
top-down models where each state represents multiple states in the underlying exact Markov chain model of
the SLS process.

De�nition 26 (TMC hitting time) The notation hk;z(p) is used for the expected hitting time for a trap
Markov chain TMC(p; k, z).

Expected hitting times are, in a sense, more important than their underlying Markov chains, and we often
do not explicitly show the Markov chains. There are several reasons for our emphasis on expected hitting
times: First, their empirical counterpart, noise response curves, are a common way of reporting results in
the SLS literature [7,8,14,16,26]. Second, optimal noise levels p� can be derived analytically from expected
hitting time formulas as we will see in Section 5. Third, displaying the Markov chain transition matrices
is in practice impossible for the many non-trivial search spaces used in this article, while expected hitting
time expressions are often compact. We do, however, show and discuss the Markov chains for a few smaller
problem instances in Section 7.1.

5 Trap Markov Chain Examples

In this section we illustrate the trap Markov chain model, presented in Section 4.3, by means of examples.

5.1 Analysis of Trap Markov Chains

Perhaps the easiest way to illustrate the utility of trap Markov chain models is by discussing concrete problem
instances, which now follow.

Example 27 (Trap Markov chains) See Figure 5 for graph representations of the transition probabilities
for the TMC(p; 5, 0), TMC(p; 5, 1), TMC(p; 5, 2), TMC(p; 5, 3), and TMC(p; 5, 4) Markov chains.

In preparation for a formal result, we provide some intuition. Let us consider TMC(p; 5; 0), the very
easy case, and suppose �rst that p = 0. It is then easily seen from Figure 5 that regardless of the initial

13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

p

h

Figure 6: The expected hitting time h(p) as a function of noise probability p for the �ve 5-bit trap Markov
chain models. The curves are, starting at the bottom, for: h5;0(p) (dashed brown), h5;1(p) (solid blue),
h5;2(p) (dashed green), h5;3(p) (solid red), h5;4(p) (dashed purple).

state 0 � X0 � 5, SimpleSLS search proceeds directly towards state 5 without making any transitions from
Xi = k to Xi+1 = k � 1 for k > 1, i > 0. Once p > 0, there is a chance that SimpleSLS makes such
transitions, and the search becomes longer.
The following result, illustrated in Figure 6, gives expected hitting times for SimpleSLS as formalized in

Example 27. This shows how the noise probability p impacts the expected hitting time hk;z(p) for problem
instances of varying di¢ culty. Di¢ culty increases with z, re�ecting Lemma 22.

Lemma 28 Assuming SimpleSLS initialization uniformly at random, the expected hitting times for TMC(p;
5, z), where 0 � z < 5, are for SimpleSLS as follows:

h5;0(p) =
24p4 � 1870p3 + 2875p2 � 625p� 7500
8 (p� 5) (2p� 5) (20p+ 3p2 � 25)

h5;1(p) =
48 875p� 39 175p2 + 17 865p3 + 194p4 + 625

32p (4p� 5) (3p� 5) (p� 5) (2p� 5)

h5;2(p) =
750p� 18 625p2 + 9670p3 � 4112p4 � 1875

64p2 (4p� 5) (3p� 5) (2p� 5)

h5;3(p) =
33p4 + 1465p3 + 1550p2 � 750p+ 1250

48p3 (4p� 5) (3p� 5)

h5;4(p) =
�912p4 � 4530p3 � 3875p2 + 3250p� 8125

384p4 (4p� 5)

Proof. The Markov chain�s initial probability distribution is

V=(�0; �1; �2; �3; �4; �5) ;

which according to (7) is

V =
 �

5
0

�
25
;

�
5
1

�
25
;

�
5
2

�
25
;

�
5
3

�
25
;

�
5
4

�
25
;

�
5
5

�
25

!
: (8)

14

We focus on h5;3(p). In order to obtain h5;3(p) from the TMC(p; 5, 3) model we form the following
simultaneous system of equations of expected �rst passage times mi for 0 � i � 5:

m0 = 1 + (1� p)m0 + pm1

m1 = 1 +

�
1� 4

5
p

�
m0 +

4

5
pm2

m2 = 1 +

�
1� 3

5
p

�
m1 +

3

5
pm3

m3 = 1 +
3

5
pm2 +

�
1� 3

5
p

�
m4

m4 = 1 +
4

5
pm3 +

�
1� 4

5
p

�
m5

m5 = 0;

which when solved gives �rst passage times fm0; :::;m5g as follows

m0 =
775p2 � 375p� 205p3 + 204p4 + 625

300p3 � 420p4 + 144p5

m1 =
475p2 � 375p+ 215p3 + 60p4 + 625

300p3 � 420p4 + 144p5

m2 =
925p2 � 750p+ 140p3 + 24p4 + 625

300p3 � 420p4 + 144p5

m3 =
285p2 � 50p� 60p3 + 125
100p2 � 140p3 + 48p4

m4 =
15p+ 22p2 + 25

25p� 35p2 + 12p3
m5 = 0:

Introducing (8), we now compute E(T j X0 = i) Pr(X0 = i) = mi�i, for 0 � i � 5, as follows

m0�0 =
775p2 � 375p� 205p3 + 204p4 + 625

300p3 � 420p4 + 144p5

�
5
0

�
25

m1�1 =
475p2 � 375p+ 215p3 + 60p4 + 625

300p3 � 420p4 + 144p5

�
5
1

�
25

m2�2 =
925p2 � 750p+ 140p3 + 24p4 + 625

300p3 � 420p4 + 144p5

�
5
2

�
25

m3�3 =
285p2 � 50p� 60p3 + 125
100p2 � 140p3 + 48p4

�
5
3

�
25

m4�4 =
15p+ 22p2 + 25

25p� 35p2 + 12p3

�
5
4

�
25
:

Adding up, we obtain h5;3(p) =
P5

i=0mi�i as desired. The remaining h5;j(p) for j 2 f0, . . . , 2g and j = 4
are developed in a similar manner and to save space we do not detail the proof here.
Illustrating Lemma 28, the graphs in Figure 6 show the impact of varying noise p for the example TMCs.

The di¤erence in the shapes of the curves for the easiest case h5;0(p), compared to the hardest case h5;4(p),
is quite dramatic. One extreme, h5;0(p), is monotonically increasing. The other extreme, h5;4(p), is �rst
monotonically decreasing, then monotonically increasing. Clearly, this has an impact on the optimal noise
level, which we discuss next.

5.2 Optimal Noise Level for Trap Markov Chains

Figure 6 clearly shows the di¤erence in optimal noise levels p�. For h5;0(p), it is intuitively clear that one
should use low noise p, more speci�cally p�5;0 = 0, since this enables SimpleSLS to greedily hill-climb to
b = 11111 without taking unnecessary downhill noise steps. For h5;4(p), on the other hand, one should

15

intuitively use high noise p in order to let SimpleSLS more easily escape the trap b = 00000 containing the
local (but non-global) optimum.
Given that expected hitting times h(p) are rational functions, for example as derived in Lemma 28,

optimal noise probabilities can be derived analytically. The following example of deriving optimal noise p�

illustrates the use of the quotient rule.

Example 29 Consider h5;3(p) from Theorem 28; using (16) gives

h05;3(p) = �
198p6 + 17 580p5 + 1850p4 � 72 250p3 + 96 250p2 � 106 250p+ 46 875

3456p8 � 20 160p7 + 43 800p6 � 42 000p5 + 15 000p4 ;

and by solving for p in h05;3(p) = 0 and checking boundaries p = 0 and p = 1 we obtain optimal noise
probability p�5;3 = 0:6687.

5.3 Discussion of Trap Markov Chains

Several points may be made with respect to Lemma 28 and Figure 6. First, we note that these are all convex
rational functions of the form h(p) = P (p)=Q(p), where P (p) and Q(p) are polynomials. Further, if we for a
short moment disallow the use of restarts, these examples illustrate how p = 0 can lead to unbounded hitting
times h(p); see Figure 6. The reason for this is that p = 0 can, for certain (unfortunate) initializations, give
unbounded search in the trap part of TMCs. Figure 6 clearly shows the unboundedness of h5;z(p) for z � 1
and p = 0. Similar trapping e¤ects with respect to local minima can take place in real problem instances,
illustrating the need for p > 0 or MAX-FLIPS < 1 in SLS.2

Second, while the trap function setting is restricted, similar patterns appear in experiments in the litera-
ture [14,26] as well as in Section 7. For instance, six di¤erent SLS algorithms each had, when tested on 400
hard random 3SAT problem instances using variable noise, a relatively clear noise level where it performed
optimally [26]. (Note that the dependent variable was fraction of problem instances solved rather than mean
run time, thus the curves were concave, with a maximum value as optimum, rather than convex as ours [26].)
Along similar lines, three empirical noise response curves for the Novelty+ SLS algorithm all have convex
shapes similar to h5;3(p) [14]. In all these cases, performance improves with increasing noise until it hits an
optimum, and performance then deteriorates with increasing noise. The pattern is in other words similar to
the curves for h5;2(p), h5;3(p), and h5;4(p). The bene�t of very small noise levels, illustrated by h5;0(p) and
h5;1(p) has, to our knowledge, received less attention in the literature. However, there are SLS results in the
areas of planning and scheduling where small noise levels have empirically been shown to be optimal [7, 8].
Third, we notice that the curves for h5;z(p), for 0 � z � 4, get closer as p increases, and in particular

that

lim
p!1

h5;0(p) = � � � = lim
p!1

h5;4(p) =
887

24
:

There is a much greater performance di¤erence between the problem instances for small p compared to for
large p. Speci�cally, �x p1 and �p, say p1 = 0:7 and �p = 0:1. Now, form p�1 = p1 � �p = 0:6 and
p+1 = p1 +�p = 0:8. Clearly, the di¤erence in performance between the problem instances h5;0(p) through
h5;4(p) is much greater for p

�
1 than for p

+
1 . This suggest that in general, setting the noise level too low, to

p� ��p, may be more detrimental than setting it too high, to p� +�p, when operating under conditions of
uncertainty about p� and the problem instance distribution. Similar recommendations have in fact already
been made based on experimental observations [17].
We believe these results shed additional light on the signi�cant impact of varying noise as observed in

experiments [17, 26, 45]. When one does not know much about the problem instance distribution ahead of
time, these results may also argue in favor of the use of adaptive noise [14,26].

6 Hitting Time Analysis

Experimentally, it has been observed that curves for mean SLS run times [14, 16] and the fraction of solved
instances when using SLS [26], plotted as functions of noise p, have shapes suggesting underlying convex

2An alternative way of escaping from traps is to use restarts, and an SLS practitioner will most likely use both non-zero
noise and non-in�nite MAX-FLIPS. While the topic of restart is crucially important in SLS, our main focus in this article is
not on the e¤ect of restart, but on the e¤ect of noise on SLS, and a detailed discussion of the joint e¤ect of restarts and noise
is beyond the scope of this article.

16

functions as well as rational functions for hitting times. We note that convexity of hitting times is also
observed in Section 5.1 and in experiments in Section 7.
We now provide several general SLS hitting time results, focusing on rational functions, convexity, and

polynomials. The justi�cations are a bit di¤erent for these cases. The condition of rationality is supported
by our analysis in Section 6.1 below. For convexity, the justi�cation is empirical results in the literature as
well as in the article. For polynomials, our justi�cation is partly Weierstrass�theorem, partly our empirical
results (see Section 7). The analysis is always with respect to a speci�c SLS model (M;O), whereM = (S,
V, P) has k := jSj states. Further, T is (as before) a random variable representing hitting time.
The results in this section apply to hitting times in general, and do not depend on the approximate Markov

chain models developed in Section 4 and Section 5. In other words, readers who found the approximate
Markov chain models too restrictive may still want to consider the more general analysis provided in this
section.

6.1 Single Problem Instances

We consider single problem instances and assume that the noise probability p = Pr(O = oN) is the inde-
pendent parameter. Let P (p) and Q(p) be polynomials. Based on our results in Section 5.1, one might
hypothesize that the expected hitting time for a problem instance has the form of a rational function
h(p) = P (p)=Q(p), and this is indeed supported by the following analysis.
From linear algebra we know that an n� n system of equations has no solution, exactly one solution, or

in�nitely many solutions. While in theory there might exist conditions under which a system of hitting time
equations for SLS have no or in�nitely many solutions, the one solution case is clearly of greatest practical
interest. We will in this article assume the existence of exactly one solution that can be found by Gaussian
elimination, as discussed below, in a �nite number of steps. In the proof of the following theorem, the key
idea is to perform Gaussian elimination in a symbolic fashion such that the noise parameter p is preserved
throughout the derivation.

Theorem 30 Consider an SLS model (M;O), where the Markov Chain M = (S,V,P) is de�ned over a
bitstring of length n and with noise parameter p. Let � = 2n, assume optimum states fs�; : : : ; s�g = O
where � � �, and form a system of equations for M�s expected �rst passage times mi for 1 � i � �: There
exists an equivalent upper triangular system Um = b, where m = (m1; : : : ;m��1)

T , in which all coe¢ cients
in U and b are rational functions of p.

Proof. We form, based onM, this system of equations for expected �rst passage times into O:

m1 = 1 + f1;1(p)m1 + f1;2(p)m2 + � � �+ f1;��1(p)m��1 + f1;�(p)m�

m2 = 1 + f2;1(p)m1 + f2;2(p)m2 + � � �+ f2;��1(p)m��1 + f2;�(p)m�

� � �
m��1 = 1 + f��1;1(p)m1 + f��1;2(p)m2 + � � �+ f��1;��1(p)m��1 + f��1;�(p)m�

m� = 0

� � �
m� = 0;

where fj;i(p) = (�j;i + �j;ip)=
j;i for constants �j;i; �j;i 2 N ,
j;i 2 N+, and
�P
i=1

fj;i(p) = 1 for 1 � j � �.

Clearly, this system can be written as

(1� f1;1(p))m1 � f1;2(p)m2 � � � � � f1;��1(p)m��1 � f1;�(p)m� = 1

�f2;1(p)m1 + (1� f2;2(p))m2 � � � � � f2;��1(p)m��1 � f2;�(p)m� = 1

� � �
�f��1;1(p)m1 � f��1;1(p)m1 � � � �+ (1� f��1;��1(p))m��1 � f��1;�(p)m� = 1

m� = 0

� � �
m� = 0:

We proceed by means of induction on the number of elementary operations, iteratively creating a system
of equations S(t+1) from system S(t) for t � 1. Here, S(1) is the following system created from the above

17

by dropping the trivially rational m� = � � � = m� = 0, substituting m� = � � � = m� = 0 into the other
equations, and performing a slight renaming:

a
(1)
1;1(p)m1 + a

(1)
1;2(p)m1 + � � �+ a(1)1;��1(p)m��1 = b

(1)
1 (p)

a
(1)
2;1(p)m1 + a

(1)
2;2(p)m2 � � � �+ a(1)2;��1(p)m��1 = b

(1)
2 (p)

� � �
a
(1)
��1;1(p)m1 + a

(1)
��1;2(p)m2 � � � �+ a(1)��1;��1(p)m��1 = b

(1)
��1(p):

For the base case t = 1, a(1)i;j (p) and b
(1)
i (p) are clearly rational. Following Gaussian elimination, we have

for the t-th step (where t � 2):

r
(t)
i;k(p) = a

(t�1)
i;k (p)

.
a
(t�1)
k;k (p) for k + 1 � i � �� 1 and t � k � �� 1 (9)

a
(t)
i;j (p) = a

(t�1)
i;j (p)� r(t)i;k � a

(t�1)
k;j (p) for k + 1 � i; j � �� 1 (10)

b
(t)
i (p) = b

(t�1)
i (p)� r(t)i;k � b

(t�1)
k (p) for k + 1 � i; j � �� 1 and t � k � �� 1 (11)

Under the inductive hypothesis that a(t�1)i;k (p), a(t�1)k;k (p), a(t�1)i;j (p), a(t�1)k;j (p), b(t�1)i (p) and b(t�1)k (p) are all
rational, it follows that the left hand sides in (9), (10), and (11) are all rational as well, since rationality is
closed under addition and multiplication as applied there. (Rational functions are in abstract algebra known
to be �elds, which are closed under multiplication and addition.) Consequently, after a �nite number of
Gaussian elimination elimination steps, an upper triangular system Um = b is obtained where all coe¢ cients
in U and b are rational functions in p.
The above theorem creates upper triangular systems; we now turn to the impact of Gaussian back

elimination on such systems.

Theorem 31 Suppose that we have a system of equations, in upper triangular form Um = b, for expected
�rst passage times mi(p), where 1 � i � ��1 < �. Further suppose that all entries in U and b are non-zero
rational functions of p. Then there exists a rational function Pi(p)=Qi(p) such that mi(p) = Pi(p)=Qi(p).

Proof. We perform back substitution on Um = b. For arbitrary mi(p) we consequently have:

mi(p) =
bi(p)�

P��1
k=i+1 ai;k(p)mk(p)

ai;i(p)
for i = �� 1,�� 2, . . . , 1:

From Theorem 30 we know that bi(p) in b and ai;k(p), and ai;i(p) in U are rational, hence any mi(p) above
is also rational due to closure under addition and multiplication.
The above result shows how the noise probability p impacts the expected �rst passages times mi, where

1 � mi � 2n. In particular, we have rational function mi(p) = Pi(p)=Qi(p) where we put Pi(p) = 0 for
� � i � �.
We next show that the expected hitting time E(T) is a rational function h(p), if we assume that �rst

passage times are rational functions.

Theorem 32 Let the �rst passage time mi(p) = E(T j X0 = i) be a rational function of p for any 1 � i � k,
and suppose that Pr(X0 = i) is constant. Then the expected hitting time E(T) is a rational function of p,
h(p).

Proof. For random variables T and C, the law of conditional expectation says that E(T) is given by

E(T) =
X

i2
(C)

E(T j C = i) Pr(C = i): (12)

Here, we have
(C) = f1, . . . , kg and E(T j C = i) = E(T j X0 = i) = mi(p). Since rational functions are
closed under multiplication with constant Pr(X0 = i), and under addition, we obtain the desired result.
The following result follows easily from our results so far in this section and gives expected hitting times

for SimpleSLS in general.

18

Corollary 33 (Rationality of SimpleSLS hitting time) Consider an SLS model (M;O), where M =
(S,V,P) is an exact Markov Chain de�ned over a bitstring of length n and with noise parameter p. The
expected hitting time forM is a rational function of p, h(p) = P (p)=Q(p), where P (p) and Q(p) are polyno-
mials.

Proof. From Theorem 31 it follows that �rst passage times are mi(p) = Pi(p)=Qi(p) for 1 � i � 2n, where
Pi(p) and Qi(p) are polynomials. Applying Theorem 32, it follows that the expected hitting time h(p) for
M is a rational function h(p).
The above result generalizes Theorem 28, and shows that rational functions are of great interest in the

analysis of SLS. In particular, they are analytical counterparts to noise response curves from the experimental
literature on SLS [7,8, 14,16,26].
For a couple of reasons, we often employ polynomial regression rather than rational function regression.

The �rst reason is that over an interval [a; b], in our case [a; b] = [0; 1] since 0 � p � 1, Weierstrass�celebrated
theorem tells us that polynomials P (x) that give arbitrary good approximations exist.

Theorem 34 (Weierstrass) Suppose that f(x) is continuous on [a; b] and let " > 0. Then there exists a
polynomial P (x) such that

k f(x)� P (x) k< ";
where k � k denotes the uniform norm over the interval [a; b].

The second reason for our use of polynomial regression is that it is better understood and more wide-
spread than rational function regression. For these reasons we use polynomial regression rather than rational
function regression in experiments in Section 7.
We now provide a su¢ cient condition for the expected hitting time E(T) to be a convex function h(p).

Theorem 35 Let the �rst passage time mi = E(T j X0 = i) be a convex function of p for any 1 � i � k,
and suppose that Pr(X0 = i) is constant. Then the expected hitting time E(T) is a convex function of p,
h(p).

Proof. Similar to the proof of Theorem 32, we use conditional expectation (12) and observe that convexity
is preserved under nonnegative multiplication and addition, and we obtain the desired result.
Experimental results giving noise response curves for individual problem instances are reported in Section

7.1 (for synthetic instances) and in Section 7.2 (for BNs from applications).

6.2 Mixtures of Problem Instances

We now investigate multiple problem instances, or classes of instances, using �nite mixture distributions.
Again, we consider noise probability p = Pr(O = oN) to be the independent parameter. We assume that
our problem instances come from a probability distribution as follows.

De�nition 36 (SLS mixture model) Suppose there are � SLS models fc1; : : : ; c�g, with ci = (Mi;Oi)
for 1 � i � �. If each SLS model is observed with probability Pr(C = ci), where

P�
i=1 Pr(C = ci) = 1, then

f(c1, Pr(C = c1)), : : :, (c�, Pr(C = c�))g de�nes an SLS mixture model.

De�nition 37 (First passage time, mixture) Consider an SLS mixture model f(c1, Pr(C = c1)), : : :,
(c�, Pr(C = c�))g. Let T be a conditional �rst passage time random variable Pr(T = t j C = ci) for 1 � i �
�. The �rst passage time of the mixture is de�ned as

Pr(T = t) =

�X
i=1

Pr(T = t j C = ci) Pr(C = ci):

This is a �nite mixture distribution with � mixture components. There are a number of reasons why such
mixtures are interesting for stochastic local search. Algorithms for NP-hard problem are typically developed
with a class or mixture of problem instances in mind. Problem instances may be dynamically generated, and
thus the generation process induces an SLS mixture. During early system design the system being modeled is
not completely known, and a mixture of BNs may represent all possibilities [28]. Finally, a given C=V -ratio
also de�nes a problem instance mixture [33,34] and in Section 7.2 we empirically investigate such mixtures.
In a mixture, there is a distinct Markov chain for each problem instance. Informally, we �rst pick the

i-th Markov chain with probability Pr(C = ci), and then use that Markov chain to give Pr(T = t j C = ci)
along with the chain�s passage time (De�nition 3) and instance hitting time (Theorem 5).

19

De�nition 38 (SLS mixture hitting time) Consider an SLS mixture model with � components and ex-
pected hitting times hj(p) for 1 � j � �. The SLS mixture hitting time H(p) is de�ned as

H(p) =

�X
j=1

hj(p) Pr(C = cj):

Having formally introduced H(p), we next show what this function actually is. To keep the notation
simple, we assume that the state space size is the same for each Markov chainMi in the SLS mixture model
fc1; : : : ; c�g = f(M1;O1); : : : ; (M�;O�)g.

Theorem 39 Let, for an SLS mixture model with � mixture components, �rst passage time be a random
variable T . The expected hitting time E(T) is the mixture hitting time H(p); E(T) = H(p).

Proof. The expected value for T for the mixture, given initial state X0 = si and component C = cj in the
SLS mixture model, is de�ned similar to De�nition 3 as E(T j X0 = si; C = cj). Using the law of conditional
expectation (12), we obtain

E(T j C = cj) =
�X
i=1

E(T j X0 = si; C = cj) Pr(X0 = si j C = cj): (13)

Using on (13) the law of conditional expectation (12) again, we obtain

E(T) =

�X
j=1

E(T j C = cj) Pr(C = cj)

=

�X
j=1

hj(p) Pr(C = cj); (14)

where we used E(T j C = cj) = hj(p) from Corollary 33. By De�nition 38, (14) is H(p) and we have the
desired result.
We now turn to rational functions; our interest in them is motivated by our results in Section 6.1.

Theorem 40 Consider an SLS mixture model f(c1, Pr(C = c1)), : : :, (c�, Pr(C = c�))g. Suppose that the
individual component hitting times hi(p), for 1 � i � �, are rational functions. Then the SLS mixture hitting
time H(p) is also a rational function.

Proof. Since hi(p) by assumption is a rational function, it can be written as hi(p) = Pi(p)=Qi(p), where Pi(p)
and Qi(p) are polynomials. Due to closure under multiplication, Pr(C = ci)hi(p) = Pr(C = ci)Pi(p)=Qi(p)
is also a rational function. There is also closure under addition, and thus

H(p) =

�X
i=1

Pr(C = ci)hi(p);

which is the de�nition of H(p), is also a rational function.
From the results above, the expected hitting time for SimpleSLS for a mixture of problem instances can

be derived.

Corollary 41 (Rationality of SimpleSLS mixture) Consider an SLS mixture model f(c1, Pr(C = c1)),
: : :, (c�, Pr(C = c�))g. Suppose that each ci = (Mi;Oi), for 1 � ci � �, is an exact SimpleSLS model with
noise parameter p. The expected hitting time for this mixture is a rational function of p, H(p) = P (p)=Q(p),
where P (p) and Q(p) are polynomials.

Proof. From Corollary 33 it follows that a SimpleSLS hitting time hi(p) , where 1 � i � �, is a rational
function. Applying Theorem 40 we conclude that the mixture H(p) is also a rational function.
The trap Markov chain results presented in Section 4.3 and Section 5 were originally intended to be

models of individual problem instances. However, since the hitting time for a problem instance is a rational
function, it follows � as stated above � that the hitting time for a mixture of problem instances (from some
class, for example as de�ned by a particular C=V -ratio) is also a rational function. Hence, one can also use
our trap Markov chain results as a model for the hitting time of a mixture of problem instances. This is a
mathematical consequence of the functional form of hitting times rather than an artifact of our analysis.
We now turn our attention to convex functions.

20

Theorem 42 Suppose that problem instance hitting times hi(p), for 1 � ci � �, are convex functions. Then
the mixture hitting time H(p) is also a convex function.

Proof. Since hi(p) is convex, Pr(C = ci)hi(p) is convex due to the fact that convexity is preserved under
nonnegative multiplication. Further,

H(p) =

�X
i=1

Pr(C = ci)hi(p)

is convex since convexity is preserved under addition.
Convexity is important because local optimality means global optimality in convex functions, thus simpli-

fying optimization algorithms. Polynomials are also helpful in noise optimization, and Section 7.2 contains
experiments with mixtures of problem instances along with polynomial regression results.

6.3 Optimal Noise Levels

What is the optimal value p� of an SLS noise parameter p? This is the question that will be discussed now,
in light of our analysis earlier in this section.

De�nition 43 (Hitting time minimization) Let the SLS noise be p and let h(p) be an expected hitting
time. The optimal noise probability, for minimizing h(p), is de�ned as

p�h = arg min
0�p�1

h(p); (15)

with minimal expected hitting time h� = h(p�h).

We note that h(p) in (15) can be the expected hitting time for one problem instance, h(p) = hi(p), or a
problem instance distribution, h(p) = H(p). Optimal noise level p�h is therefore with respect to one problem
instance or a mixture of problem instances.
If we make certain assumptions about the form of h(p), further progress can be made. We now consider

di¤erentiable h(p), which it certainly is if it is a rational function or a polynomial. We may then take the
derivative h0(p) and in order to �nd the optimal SLS noise level p�h solve the equation h

0(p) = 0. Forming
h0(p) for polynomial h(p) is trivial, however it is a mathematical fact that in the general case, polynomials
have complex roots. In other words, solving h0(p) = 0 or r0(p) = 0 (where r(p) is expected run time, see
Section 6.4) may give complex solutions only. Certain strict subsets of polynomials, for instance polynomials
with real coe¢ cients of odd degree, have at least one real root. Given this setting, there are two options
for h(p) or r(p) of odd degree (so h0(p) = 0 and r0(p) have even degree, thus they may not have at least
one root): (i) Disregard all h(p) or r(p) of even degree a priori, since at least one real root for h0(p) = 0 or
r0(p) = 0 is not guaranteed. (ii) Not disregard all h(p) or r(p) of even degree a priori, since even though
there is no guarantee for one or more real roots, in many cases (for example, in all cases except two in Table
3 containing r0(p)) real roots may be found and provide useful insight. In a noise optimization algorithm
based on computing h0(p) = 0 one would perhaps prefer to follow approach (i). In this article, however, the
purpose is analysis and insight rather than optimization algorithm development and thus we prefer (ii).
When h(p) is a rational function, h(p) = P (p)=Q(p), the well-known quotient rule has this form:

h0(p) =
Q(p)P 0(p)� P (p)Q0(p)

Q(p)2
: (16)

In addition to a better understanding of the noise phenomenon, the results above may also serve �
in future research � as a basis for improved algorithms for computing p�h. For example, rational function
or polynomial regression may play a role in such improved algorithms. When p�h is estimated (in part)
empirically, the notation p̂�h and terminology such as optimized noise level or estimated optimal noise level
is used.

6.4 Initialization and Restart

Using more advanced initialization algorithms than initialization uniformly at random has proven to be a
powerful way to improve SLS performance [22,30,31,36,37]. SimpleSLS can clearly support di¤erent ways

21

of initializing b, and SGS in fact takes an initialization algorithm portfolio I. In the Markov chainM, the
initial distribution V then needs to be changed to re�ect the particular initialization algorithm. In general,
each initialization algorithm or operator has a distinct initialization distribution V, and Theorem 28 can be
adapted correspondingly to re�ect this.
Another technique, namely restarts or using MAX-FLIPS<1, has been shown to be bene�cial in SLS [38]

as well as in systematic search [10]. In many cases, restarts play a central role in SLS and using a close to
optimal MAX-FLIPS value is essential for strong performance [38,43]; for TMCs this was observed in Section
5.3. In recent research, an approach to dynamically optimizing the SLS restart parameter MAX-FLIPS has
been developed [41,42], based on learned Bayesian networks that predict inference run times [19].
In general, it is consequently important to distinguish between expected run time and expected hitting

time. We now formally introduce expected run time.

De�nition 44 (Expected run time) Let X, a random variable, be the number of �ips performed by Sim-
pleSLS when the noise probability is p. The expected run time (or number of �ips) is de�ned as r(p) = E(X).

Note that the concepts of run time and expected run time do not (necessarily) use Markov chains. Our
hitting time results, on the other hand, rely on the use of Markov chains. Unfortunately, SLS restarts,
which may take place when MAX-FLIPS 6=1 in SimpleSLS, may violate the Markov property.3

Expected run times are well-de�ned even when restarts occur, and we are interested in their minimization.

De�nition 45 (Run time minimization) Let r(p) be the expected run time (or number of �ips) for Sim-
pleSLS. The optimal noise probability, which minimizes r(p), is de�ned as

p�r = arg min
0�p�1

r(p);

with minimal expected run time r� = r(p�r).

If MAX-FLIPS =1 then obviously p�r = p
�
h; however in general it is clear that p

�
r 6= p�h. In the theoretical

part of this article we are discussing the optimal noise probability with respect to expected hitting time, p�h,
while in the experimental part of this article we are in addition discussing optimal noise probability with
respect to expected run time, p�r . As it should be clear from the context whether p�r or p

�
h is referred to,

we will simply say �optimal noise probability�and p�. In Section 7, we empirically investigate estimates of
expected hitting times ĥ(p) as well as expected run times r̂(p) using very similar techniques. It turns out
that the noise response curves for expected run times are similar to those for expected hitting times.

7 Experiments

Our analysis made certain assumptions and simpli�cations that raise questions such as the following: Is
there a relationship between the trap Markov chain model and real problem instances? What is the SLS
search behavior on sets of problem instances, corresponding to SLS mixtures? What is the impact of varying
noise, on SLS run times, in more realistic, large-scale problem instances from applications?
To answer these questions, we here report on real search behavior from experiments with Bayesian

networks using SGS, an SLS system. There is strong evidence that a problem instance that is hard for one
SLS algorithm is also hard for other SLS algorithms [17], hence we investigate one SLS system in depth.
Stochastic greedy search (SGS), which can simulate SimpleSLS, computes MPEs and supports multiple
search operators and initialization operators [27,30]. SGS has these input parameters: � - a BN; f� - MPE
probability Pr (x�i); I - a portfolio of initialization algorithms; S - a portfolio of search algorithms; MAX-
FLIPS - the number of �ips before a restart; and MAX-TRIES - the number of tries before termination.
For S, our focus is on greedy operators, named BM and GM, as well as noisy operators, named NU, BS,
and GS. NU implements uniform noise oN as described in Section 3. BS and GS are noisy but biased
towards improving the current explanation�s probability. BM and GM, which correspond to oG, are pure
hill-climbers and maximize gain without any noise. Without going into too much detail, which is covered
elsewhere [27, 30], su¢ ce it to say that BM and BS operate on gain in probability based on (2), while GM
and GS are probabilistic generalizations of GSAT gain [45, 46] and have turned out to be powerful in BNs
with many deterministic nodes [27,30].

3 In making this claim, we assume that Markov chain states do not re�ect the number of �ips made. In theory, one could
perhaps expand the exact Markov chain model to also re�ect number of �ips made by WalkSLS, however this is beyond the
scope of this work.

22

In Section 7.1, based on 100 small synthetic BNs, we investigate the connection between trap functions,
trap Markov chains, and real SGS search behavior. In Section 7.2 we investigate real SGS search behavior
using 800 synthetic BNs, emphasizing BNs of varying C=V -ratio and approximation using polynomial regres-
sion. In Section 7.3, we experiment with SGS using application BNs, and also investigate noise strategies
that go beyond uniform random noise as well as more advanced initialization algorithms than initialization
uniformly at random.

7.1 Experiments with Small Synthetic Bayesian Networks

What is the relationship between the TMCmodels from Section 4 and Section 5 and real SLS search behavior?
In order to clearly link the TMC analysis and experimental parts of this article, we here investigate 100
randomly generated 3SAT problem instances, represented as BNs, where the search space is the same size
as the example trap Markov chains used in our analysis. In the following, we �rst discuss how a sample
of synthetic problem instances was generated, and then discuss noise response experiments for all satis�able
problem instances in the sample. A detailed analysis then follows, where we show the complete search spaces
for two interesting problem instances, analytically derive their Markov chains, and compare analytical results
with empirical SGS search behavior.

7.1.1 Methodology for Generating Small Synthetic Bayesian Networks

Let, in a Bayesian network (BN), V be the number of root nodes and C the number of non-root nodes.
It has been demonstrated that the ratio C=V is a key parameter for SAT and BN inference hardness for
randomly generated problem instances [27, 33, 34]. For BNs, the C=V -ratio can be used to predict upper
and lower bounds on the optimal maximal clique size (or treewidth) of the induced clique tree for bipartite
BNs randomly generated using the BPART algorithm [27,29,33]. The BPART algorithm has these input
parameters: Q - CPT type of root nodes; F - CPT type of the non-root nodes; V - the number of root
nodes; C - the number of leaf nodes; S - the number of states per node; P - the number of parents per
non-root node; and R - regularity of the BN�s underlying graph.
The input parameters of BPART were set as follows to generate 3SAT BNs for experimentation: The

CPT type of the root nodes was Q = uniform; the CPT type of the non-root nodes was F = or; the number
of root nodes was V = 5; the number of leaf nodes was C = 20; the number of states per node was S = 2;
the number of parents per leaf node was P = 3; and irregular BNs were created by setting R = false. This
gives C=V = 4:0, which lies somewhat below the phase transitions of SAT [34], meaning that most generated
problems would be satis�able, but some might not be. Using these parameter settings, 100 problem instances
were generated. The existence of satisfying assignments was checked by processing the BNs, with clamped
leaf nodes, using the Hugin tree clustering system, which implements the tree clustering algorithm [5,24].
The SGS system [27, 30, 31] with no restarts, uniform initialization in I, and search portfolio S(p) :=

f(p,UN) , (1� p,GM)g was employed, with varying noise probability. Following standard methodology,
experiments with SGS were only conducted using instances with one or more satisfying assignments.

7.1.2 Noise Experiments using Small Synthetic Bayesian Networks

Experimentation progressed in two phases: First, noise responses for all satis�able problem instances were
generated empirically by varying the noise level from p = 0:1 to p = 0:9 in increments of �p = 0:05. The
empirically observed optimal values for the noise parameter ranged from p̂� = 0:1 to p̂� = 0:7. Second, more
detailed studies were performed, focusing on: (i) expected hitting time results derived analytically for a few
real problem instances; (ii) real SGS search behavior for the same problem instances; and (iii) polynomial
regression results based on SGS�s search behavior under varying p.
The complete search spaces for the easiest and hardest problem instances in the sample, denoted �81 and

�8 respectively, are illustrated in Figure 7. Let b
+ 2 f0; 1g5 range over all almost-satisfying assignments,

de�ned as assignments with C � 1 = 19 satis�ed clauses. Such almost-satisfying assignments are of interest
because they may form local optima that trap the SimpleSLS search process. From Figure 7 we see that
both �81 and �8 have eight almost-satisfying assignments. For the easy problem instance �81, Hamming
distance to optimum b� is d(b+; b�) = 1 or d(b+; b�) = 2 in all but two cases. Clearly, the three search space
states with d(b+; b�) = 1 do not form local optima in �81. For the hard problem instance �8, on the other
hard, d(b+; b�) = 3 or d(b+; b�) = 4 in all but one case and all of the almost-satisfying assignments, or �19�
states, form a local optimum.

23

Easiest problem instance in sample: �81

17

20

1819191916

18 18 16 17 17

18 16 18 1916 17 17 19 17 15

16 18 1917 16 18 1914 1819

17

20

1819191916

18 18 16 17 17

18 16 18 1916 17 17 19 17 15

16 18 1917 16 18 1914 1819

Hardest problem instance in sample: �8

17

20

1818171818

15 19 19 19 16

18 19 16 1919 15 16 15 16 19

19 17 1817 18 17 1617 1716

17

20

1818171818

15 19 19 19 16

18 19 16 1919 15 16 15 16 19

19 17 1817 18 17 1617 1716

Figure 7: The complete search spaces for two randomly generated BNs that represent instances of the
satis�ability problem (3SAT) with V = 5 variables and C = 20 clauses. We show, for instances with one
satisfying assignment, the easiest and the hardest problem instances from a random sample of 100 BNs. The
number of satis�ed clauses is shown for each state in the search space.

More speci�cally, the eight �19�states in �81 are all connected, and three of them have the optimal �20�
state as a neighbor. Hence, these �19�states form a plateau from which �20�is reached with relative ease.
In �8, the eight �19� states are all connected also; however for this harder problem instance these states
form a local optimum since none of them has �20�as a neighbor. Based on this inspection of search spaces,
we expect �81 to be easier than �8 for SimpleSLS because �81 does not trap the search process to the
same degree. More generally, this illustrates that instances can be easier because of the number or relative
location of almost-optimal states or more generally local optima in the search space, which in idealized form
is illustrated in trap functions.
To provide a more detailed quantitative analysis, we created two distinct Markov chains based on the two

problem instances, also taking into account the behavior of SGS. These two Markov chain models, which
we denote MC(p;�81) and MC(p;�8), are derived by inspecting the complete search spaces of �8 and �81
respectively. These approximate Markov chains are shown in Figure 8. In the following table we compare
Pr(Xi+1 = 3 j Xi = 2) and Pr(Xi+1 = 4 j Xi = 3), which lead search towards optimum, for TMC(p; 5; 0),
TMC(p; 5; 4), MC(p;�81), and MC(p;�8):

Pr(Xi+1 = 3 j Xi = 2) Pr(Xi+1 = 4 j Xi = 3)
TMC(p; 5; 0) - Very Easy 1:0� 0:4p 1:0� 0:6p
MC(p;�81) - Easiest in sample 0:85� 0:25p 0:78� 0:38p
MC(p;�8) - Hardest in sample 0:23 + 0:37p 0:1 + 0:3p
TMC(p; 5; 4) - Hard 0:6p 0:4p
Just by considering the signs of the coe¢ cients in front of p in this table, we clearly see the similarity

between TMC(p; 5; 0) and MC(p;�81) on the one hand and TMC(p; 5; 4) and MC(p;�8) on the other. For
TMC(p; 5; 0) and MC(p;�81), increasing the noise parameter p decreases the probabilities Pr(Xi+1 = 3 j
Xi = 2) and Pr(Xi+1 = 4 j Xi = 3) that SimpleSLS moves towards the optimal state s� = 5. This re�ects
that pure or almost pure hill-climbing, with no or minimal noise p, is optimal in the underlying search
spaces. For TMC(p; 5; 4) and MC(p;�8), on the other hand, increasing the noise parameter p increases the
probabilities Pr(Xi+1 = 3 j Xi = 2) and Pr(Xi+1 = 4 j Xi = 3) that SimpleSLS moves towards s� = 5.
This shows how, in order to counter-act search being trapped in parts of the search space that do not contain
optima, the noise parameter p can be increased. There is a similarity between the search traps observed
in the idealized TMC models and the search traps as re�ected in the Markov chains of the real problem
instances �8 and �81.
With the Markov chains MC(p;�81) and MC(p;�8) in hand, we can analytically derive expected hitting

24

Easiest
in sample

0 1 2 3 4 5

1 (5­p)/5 (5­4p)/5(47­23p)/60(17­5p)/20

4p/5(13+23p)/60(3+5p)/20 p 1­pp/5

Hardest
in sample

0 1 2 3 4 5

1 (5­p)/5 (5­4p)/5(1+3p)/10(7+11p)/30

4p/5(9­3p)/10(23+11p)/30 p 1­pp/5

Easiest
in sample

0 1 2 3 4 5

1 (5­p)/5 (5­4p)/5(47­23p)/60(17­5p)/20

4p/5(13+23p)/60(3+5p)/20 p 1­pp/5

Easiest
in sample

0 1 2 3 4 5

1 (5­p)/5 (5­4p)/5(47­23p)/60(17­5p)/20

4p/5(13+23p)/60(3+5p)/20 p 1­pp/5

Hardest
in sample

0 1 2 3 4 5

1 (5­p)/5 (5­4p)/5(1+3p)/10(7+11p)/30

4p/5(9­3p)/10(23+11p)/30 p 1­pp/5

Hardest
in sample

0 1 2 3 4 5

1 (5­p)/5 (5­4p)/5(1+3p)/10(7+11p)/30

4p/5(9­3p)/10(23+11p)/30 p 1­pp/5

Figure 8: Markov chains created from considering the search spaces of two problem instances �81(top) and
�8 (bottom) along with the behavior of SimpleSLS. Figure 7 shows underlying the search spaces.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

p

h

Figure 9: The expected hitting time h as a function of noise probability p for the two extreme problem
instances �8 and �81 (black line for �81 and red line for �8), picked from a sample of 100, along with
actual SGS behavior for the same two instances (black squares for �81 and red circles for �8). Expected
hitting times h5;0(p) (dashed brown) and h5;4(p) (dashed purple) for the two 5-bit trap Markov chain models
TMC(p,5,0) and TMC(p,5,4) are also shown.

time curves, and compare them to empirical noise response curves. In Figure 9, we show: (i) expected
hitting times derived from extreme trap Markov chains (TMCs); (ii) expected hitting time curves and run
times, in the form of rational functions, derived from the Markov chains in Figure 8; and (iii) data points
reporting real SGS behavior on the same problem instances. There is a very good correspondence between
analytical hitting time results in (ii) and observed SGS run times in (iii). For both (ii) and (iii), (i) provides
lower bounding hitting time h5;0(p) and upper bounding hitting time h5;4(p). To our knowledge, similar
displays that compare analytical and experiments results have not been reported in the literature earlier.
We learned above that closed-form expressions of expected hitting times can be found for �81 and �8.

Next, we determine experimentally polynomial regression approximations P̂ (p) for SGS run times. Our
polynomial approximations are shown in Table 1, and in Figure 10 we present empirical results along with
regression curves. Regression results are signi�cant according to the R2 values, and Figure 10 shows very
good correspondence between empirical and analytical results. The polynomial regression lines are very
close except for towards the less interesting endpoints of their domain [0:1; 0:9], as is typically the case.

25

Inst. Order Polynomial Approximation ĥ(p) R2

�81 4 112:72p4 � 160:74p3 + 89:826p2 � 13:69p+ 5:0822 0.9973
�81 5 �36:836p5 + 209:41p4 � 255:9p3 + 133:1p2 � 22:627p+ 5:7406 0.9973
�81 6 �2455:5p6 + 7697:9p5 � 9428:3p4 + 5770:7p3 � 1840:9p2 + 294:85p� 13:635 0.9983

�8 4 495:22p4 � 1151:8p3 + 1021:2p2 � 418:25p+ 94:197 0.9959
�8 5 �682:5p5 + 2201:5p4 � 2724:4p3 + 1673:8p2 � 536:31p+ 101:33 0.9970
�8 6 �1161:6p6 + 2802:4p5 � 1878:8p4 � 372:05p3 + 982:67p2 � 440:52p+ 96:57 0.9971

Table 1: Regression polynomials of order k = 4, k = 5, and k = 6 created from empirical SGS search data
for the two extreme problem instances �81 and �8 (Easiest and Hardest in sample respectively).

Analytical and empirical results for �81

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

p

h

Analytical and empirical results for �8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

30

40

50

p

h

Figure 10: Comparison of (i) analytical hitting times derived from Markov chains MC(p;�) (black dashed
line); (ii) empirical data points generated from real SGS search behavior (black circles); and (iii) polynomial
regression curves estimated from the empirical data points. The polynomial regressions lines are of order
k, with k = 4 (green line), k = 5 (red line), and k = 6 (blue line). Left: Results for problem instance �81;
Right: Results for problem instance �8.

7.2 Experiments with Large Synthetic Bayesian Networks

In this section we systematically and simultaneously vary the hardness of problem instances as well as the SLS
noise probability. We report on observed SGS search behavior, and how it can be �tted using polynomials.
Here, real search results for BNs corresponding to SAT instances are reported for V = 30, with C=V = 2:0
to C=V = 3:4, where for each C=V -value 100 problem instances were generated and searched over. Hence,
the real search behavior of SGS for 800 problem instances is summarized and analyzed in this section. To
our knowledge, similar noise response experiments have not been reported in the literature earlier.

7.2.1 Methodology for Generating Large Synthetic Bayesian Networks

For the experiments reported here, where SAT-like BNs were generated, we again used the BPART approach
discussed in Section 7.1. Here, BPART�s input parameters were set as follows, generating larger problem
instances compared to those in Section 7.1: The CPT type of the root nodes was Q = uniform; the CPT
type of the non-root nodes was F = or; the number of root nodes was V = 30; the number of states per
node was S = 2; the number of parents per leaf node was P = 3; and irregular BNs were created by setting
R = false. We varied the number of leaf nodes while keeping V = 30 constant, giving C=V -ratios varying
from C=V = 2:0 to C=V = 3:4. This is in the satis�able region of SAT [34] where solutions exist with very
high probability. The existence of solutions was also checked by processing the BNs using the Hugin tree
clustering system, which implements the tree clustering algorithm [5,24].

7.2.2 Noise Experiments using Large Synthetic Bayesian Networks

The purpose of the second set of BN experiments was to investigate in more detail the combined e¤ect
of varying noise p and varying the hardness of larger, more realistically sized problem instances. For the

26

Synthetic BNs, Uniform noise

14.1 15.0 16.0 18.1
22.1

29.4
45.0

19.8 19.8 21.6 24.2 28.5
37.9

60.6

27.0 27.4 28.5 31.0 36.5
50.2

83.8

41.7 40.8 40.1 42.4 49.4
67.6

114.2

61.8 57.1 53.3 55.1 61.5
85.9

156.2
103.2 89.5 82.0 85.0 93.3

129.0

261.1
219.2

157.0 134.4 125.6 146.2
212.0

492.1
347.9

255.6
211.5 198.2 220.9

347.0

864.5

10.0

100.0

1000.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Noise probability

Ru
n

tim
e (

fli
ps

)
C/V=2.0

C/V=2.2

C/V=2.4

C/V=2.6

C/V=2.8

C/V=3.0

C/V=3.2

C/V=3.4

Figure 11: Experimental results for synthetic BNs with C=V -ratios ranging from C=V = 2:0 to C=V = 3:4.
Sample means for the run times (number of �ips) is shown as a function of SLS noise probability p. Note
that all these piecewise linear functions are convex.

purpose of these experiments we measured instance hardness by means of the C=V -ratio. The stochastic
local search algorithm SGS [27, 30] was employed, using a restart parameter value MAX-FLIPS optimized
for the C=V -ratio and p at hand. The search portfolio SN (p) := f(p,UN) , (1� p,GM)g was used, with
noise probability varying from p = 0:1 to p = 0:7 in increments of �p = 0:1. Initialization uniformly at
random was used in I.
Figure 11 summarizes the experimental results. Each BN was searched 100 times by SGS, and since for

each C=V -ratio 100 BNs were generated, each data point in Figure 11 represents 10,000 successful searches
by SGS. There are eight di¤erent C=V -ratios, ranging from C=V = 2:0 to C=V = 3:4. The noise probability
p was varied as re�ected on the x-axis of Figure 11. The y-axis shows noise response curves in the form of
the mean number of �ips until an optimum b� was found. For the relatively easy C=V = 2:0 BNs, the sample
average is monotonically increasing with the noise p, and the experimentally determined global minimum run
time r̂� was found at the minimal noise level investigated, so p̂� = 0:1. For the hardest problem instances,
with C=V = 3:4, the sample mean is �rst monotonically decreasing, then increasing, as a function of p. Here,
the experimentally determined optimal noise level is p̂� = 0:4. For C=V = 2:6, the sample average is close
to constant from p = 0:1. to p = 0:4; it then increases monotonically. Results for the other intermediate
C=V -ratios, 2:0 < C=V < 2:6 and 2:6 < C=V < 3:4, are similar to the C=V = 2:0 case or the C=V = 3:4
case respectively.
As argued in Section 6.2, similar analysis approaches can be used for mixtures, one of which has been

sampled here for each C=V -ratio, as for individual problem instances. The noise response curves in Figure 11
are similar to those reported for TMCs in Figure 6 and for smaller problem instances in Figure 10, illustrating
how our results carry over from individual problem instances to mixtures of problem instances as predicted
by our analysis in Section 6. Polynomial approximation results are shown in Table 2 and in Figure 12. For
each C=V -ratio we give three alternatives, namely polynomials of orders 4, 5, and 6. Polynomials of smaller
order did not give good results. From C=V = 2:0 to C=V = 2:8, all polynomials give rather similar results.
From C=V = 3:0 to C=V = 3:4, the polynomials of order k = 4 provide visibly poorer results as can be seen
in Figure 12 and from R2 in Table 2.
Qualitatively, these results are consistent with the analysis in Section 4, Section 5, and Section 6 as

well as earlier experiments [16, 17, 26, 45]. A key point here is that increasing average problem instance
hardness, as controlled by the C=V -ratio, corresponds to moving the slope-change state z in a trap Markov

27

C/V Order Polynomial Approximation, r̂(p) R2

2.0 4 y = 512:9p4 � 530:2p3 + 224:2p2 � 30:88p+ 15:43 0:9998
2.0 5 y = 1500p5 � 2486p4 + 1694p3 � 525:6p2 + 80:83p+ 9:771 1:0
2.0 6 y = 2798p6 � 5216p5 + 3861p4 � 1298p3 + 205:9p2 � 5:501p+ 13:51 1:0

2.2 4 y = 1255p4 � 1568p3 + 740:9p2 � 133:1p+ 27:17 0:9999
2.2 5 y = 1112p5 � 968:7p4 + 81:31p3 + 184:9p2 � 50:21p+ 22:97 1:0
2.2 6 y = 1285p6 � 1973p5 + 1947p4 � 1293p3 + 520:9p2 � 89:87p+ 24:69 1:0

2.4 4 y = 1554p4 � 1766p3 + 758:2p2 � 127:2p+ 33:84 0:9999
2.4 5 y = 2249p5 � 2944p4 + 1570p3 � 366:4p2 + 40:40p+ 25:36 1:0
2.4 6 y = 833:3p6 + 249:1p5 � 1054p4 + 679:5p3 � 148:6p2 + 14:69p+ 26:48 1:0

2.6 4 y = 1998p4 � 2186p3 + 919:9p2 � 168:8p+ 51:50 0:9996
2.6 5 y = 4797p5 � 7596p4 + 4930p3 � 1479p2 + 188:6p+ 33:41 1:0
2.6 6 y = 1246p6 + 1807p5 � 4770p4 + 3597p3 � 1153p2 + 150:1p+ 35:08 1:0

2.8 4 y = 3732p4 � 4380p3 + 1941p2 � 392:6p+ 85:94 0:9994
2.8 5 y = 8302p5 � 12872p4 + 7935p3 � 2210p2 + 225:9p+ 54:63 1:0
2.8 6 y = �27081p6 + 73297p5 � 74297p4 + 36887p3 � 9289p2 + 1061p+ 18:42 1:0

3.0 4 y = 9418p4 � 12094p3 + 5708p2 � 1179p+ 175:8 0:9984
3.0 5 y = 23729p5 � 38041p4 + 23104p3 � 6157p2 + 588:9p+ 86:35 1:0
3.0 6 y = �22734p6 + 78291p5 � 89606p4 + 47409p3 � 12100p2 + 1290p+ 55:95 1:0

3.2 4 y = 22176p4 � 29756p3 + 14929p2 � 3402p+ 438:8 0:9981
3.2 5 y = 46501p5 � 70825p4 + 39220p3 � 8321p2 + 61:77p+ 263:4 0:9996
3.2 6 y = 270595p6 � 602928p5 + 542934p4 � 250071p3 + 62412p2 � 8286p+ 625:3 1:0

3.4 4 y = 39431p4 � 51539p3 + 24947p2 � 5500p+ 698:2 0:9985
3.4 5 y = 82600p5 � 125769p4 + 70985p3 � 16353p2 + 653:6p+ 386:7 1:0
3.4 6 y = 165545p6 � 314708p5 + 249717p4 � 105998p3 + 26920p2 � 4454p+ 608:1 1:0

Table 2: Polynomial approximations for SGS sample average run times (�ips), as a function of noise level p,
for varying C=V -ratios. The polynomials were determined from experimental data using non-linear regres-
sion. For each C=V -ratio three alternatives are given, namely polynomials of order 4, 5, and 6.

chain towards the optimum state (see Figure 5). In other words, problem instances that are easy on average
(corresponding to TMCs with slope-change states z close to 00:::0) should be solved by a greedier SLS
algorithm than problem instances that are hard on average (corresponding to TMCs with slope-change state
z close to 11:::1). We also note that the piecewise linear curves are convex for all C=V -ratios. What is novel
here, compared to earlier experiments that we know of, is the di¤erent pattern for the easy C=V = 2:0 case
versus the hard C=V = 3:4 case, our extensive regression analysis using polynomials, and the clear display
of convexity across a wide range of C=V .

7.2.3 Optimal Noise Level Experiments using Large Synthetic Bayesian Networks

From earlier analysis and experiments, we know that the noise probability has a signi�cant impact on the
number of search steps needed to reach an optimum. How does the optimal noise probability p� change as
the C=V -ratio changes? This is the research question investigated in this section.
We wanted to minimize the number of �ips as a function of the C=V -ratio. We �rst found approximate

optima based on the regression polynomials reported in Table 2. This was done by taking derivatives
d
dp r̂(p) = r̂0(p) and then solving the equation r̂0(p) = 0 with respect to p in order to compute optimized
noise p̂�. The results are shown in Table 3. For each value of C=V , one empirical and three regression
polynomials, of di¤erent orders, are presented.
In a few cases, r̂0(p) = 0 had multiple candidate solutions but it was obvious which one was most

reasonable to choose as re�ected in the table. Further, in two cases there were only complex solutions and
in one case (C=V = 2:4 and polynomial of order 6) the solution was less than zero so it was set to zero. As
discussed in Section 6.3, even-degree polynomials are not guaranteed to have real roots. Given this fact, we
have still opted to include in Table 3 the cases where r0(p) has degree 4. Even though there is no guarantee
for a real root, in most cases (speci�cally, in all cases except two in Table 3 containing r0(p)) a real root was
found and thus additional insight is provided.

28

Clearly, there is a good correspondence between the polynomials and the empirical results, especially for
the polynomials of order k = 6 for the higher C=V -values. Considering Figure 12, and excluding C=V = 2:0
and C=V = 2:2, one can see that k = 5 and k = 6 give quite similar results for p̂�.

7.3 Experiments with Application Bayesian Networks

It is of great interest to consider also more advanced initialization and noise strategies on problem in-
stances from applications. Here, we report empirical SGS results for application BNs, many of which
are taken from Friedman�s Bayesian Network Repository at http://www.cs.huji.ac.il/labs/compbio/
Repository/. The application BNs investigated are Mildew, Munin1, Pir3, and Water. The Mildew BN
is for determining the amount of fungicides to use to counter-act mildew attacks on wheat. The Munin1
network is a medical BN from the �eld of electromyography [2]. The Pir3 BN is for information �ltering
for the purpose of battle�eld situation awareness [21,32]. The Water BN models the biological processes of
water puri�cation.
The purpose of these experiments was to investigate the e¤ect of varying p, and also investigate SLS

strategies that go beyond uniform random noise and initialization uniformly at random. More speci�cally,
we compared the following two search algorithm portfolios SG(p) and SU (p).

De�nition 46 (Guided noise) The guided noise portfolio SG(p) is a function of noise probability p and is
de�ned as

SG(p) :=
��p
2
;BS

�
;
�p
2
;GS

�
;

�
1� p
2
;BM

�
;

�
1� p
2
;GM

��
.

De�nition 47 (Uniform noise) The uniform noise portfolio SU (p) is a function of noise probability p
and is de�ned as

SU (p) :=
�
(p;NU) ;

�
1� p
2
;BM

�
;

�
1� p
2
;GM

��
.

In experiments, we used either SG(p) or SU (p) as the search algorithm portfolio of SGS. We note that all
experiments using SG(p) do not use uniform random noise, but more advanced approaches to noisy search.
In addition, we also compared IU (initialization uniformly at random) versus IG (guided initialization), and
also varied MAX-FLIPS.

7.3.1 Varying Noise, Initialization, and Restart Point: One Application BN

The purpose of our �rst set of experiments was to establish the e¤ect, if any, of using di¤erent variants of
SGS for one particular BN, Water. Speci�cally, we varied both I and S. We studied the impact of varying
the noise p, from p = 0:1 to p = 0:8, under conditions of di¤erent noise and initialization portfolios as well
as di¤erent values of the MAX-FLIPS restart parameter. The two orthogonal dimensions investigated were:

� Initialization portfolio I : Uniform initialization IU versus guided initialization IG. Here, uniform means
initialization uniformly at random while guided means the use of forward simulation [13].

� Search portfolio S: Uniform noise SU (p) versus guided noise SG(p).

The four conditions investigated were: (1) - IU and SU (p); (2) - IG and SU (p); (3) - IU and SG(p); and
(4) - IG and SG(p). Figure 13 presents the results for these four di¤erent conditions in the form of sample
means and piecewise linear approximations for r̂(p). In all cases, r̂(p) is convex or close to convex. There
are quite di¤erent run time responses to changes in noise, depending on the initialization operator used in
I, the noise operator used in S, and the value of the MAX-FLIPS parameter. Clearly, condition (4) has
the shortest run time and also the overall average run time is shortest; the impact of varying p on r̂(p) is
small. Condition (1) has the longest run times; here the impact of varying p is large. Overall, perhaps the
greatest impact on r̂(p) is due to whether uniform noise SU (p) (top row, (1) and (2)) or guided noise SG(p)
is used (bottom row, (3) and (4)). For uniform noise, the impact of varying noise p is dramatic and p̂� � 0:4
for a given MAX-FLIPS level in all cases. For guided noise, on the other hand, the e¤ect of varying p on
r̂(p) is rather minimal. Further, and perhaps surprisingly, p̂� is in (3) and (4) quite large in all cases but
one, namely MAX-FLIPS = 50 in (3). Overall, the non-trivial interactions between BN, SLS algorithm
parameters, and noise p are illustrated here. However, the piecewise linear approximation are convex or
close to convex in all cases, thus supporting our analytical results.

29

C/V Order Derivative of Polynomial Approximation, r̂0(p)
Optimized
Noise p̂�

2.0 4 2051:6p3 � 1591p2 + 448:4p� 30:88 9: 95� 10�2
2.0 5 7498p4 � 9945p3 + 5083p2 � 1051:2p+ 80:83 Complex
2.0 6 7712p5 � 9864p4 + 7786p3 � 3878p2 + 1042p� 89:87 1:55� 10�2
2.0 N/A Empirical 0.1

2.2 4 5020p3 � 4704p2 + 1482p� 133:1 0:149
2.2 5 5560p4 � 3875p3 + 243: 9p2 + 369:8p� 50: 21 0:148
2.2 6 7712p5 � 9864p4 + 7786p3 � 3878p2 + 1042p� 89:87 0:147
2.2 N/A Empirical 0.1 and 0.2

2.4 4 6215p3 � 5297p2 + 1516p� 127:2 0:144 24
2.4 5 11246p4 � 11 778p3 + 4711p2 � 732:8p+ 40:40 Complex
2.4 6 5000p5 + 1245p4 � 4217p3 + 2038p2 � 297:1p+ 14:69 0
2.4 N/A Empirical 0.1

2.6 4 7994p3 � 6559p2 + 1840p� 168: 8 0:196
2.6 5 23986p4 � 30383p3 + 14789p2 � 2957p+ 188:6 0:279
2.6 6 7476p5 + 9034p4 � 19079p3 + 10792p2 � 2306p+ 150:1 0:280
2.6 N/A Empirical 0.3

2.8 4 14929p3 � 13140p2 + 3882p� 392:6 0:366
2.8 5 41 512p4 � 51 488p3 + 23 805p2 � 4420p+ 225:9 0:327
2.8 6 �162 486p5 + 366 485p4 � 297 188p3 + 110 661p2 � 18 578p+ 1061 0:305
2.8 N/A Empirical 0.3

3.0 4 37671p3 � 36 282p2 + 11416p� 1179 0:412
3.0 5 118645p4 � 152 164p3 + 69 312p2 � 12314p+ 588:9 0:315
3.0 6 �136 404p5 + 391 455p4 � 358 424p3 + 142 227p2 � 24 200p+ 1290 0:307
3.0 N/A Empirical 0:3

3.2 4 88 704p3 � 89 268p2 + 29 858p� 3402 0:437
3.2 5 232 505p4 � 283 300p3 + 117 660p2 � 16643p+ 61:77 0:355
3.2 6 1623 570p5 � 3014 640p4 + 2171 736p3 � 750 213p2 + 124 824p� 8286 0:384
3.2 N/A Empirical 0:4

3.4 4 157 724p3 � 154 617p2 + 49 894p� 5500 0:448
3.4 5 413 000p4 � 503 076p3 + 212 955p2 � 32 706p+ 653:6 0:389
3.4 6 993 270p5 � 1573 540p4 + 998 868p3 � 317 994p2 + 3840p� 4454 0:394
3.4 N/A Empirical 0:4

Table 3: Noise optimization based on derivatives of the polynomial approximations for SGS sample average
run times (number of �ips), as a function of noise level p = x, for varying C=V -ratios. For each C=V -ratio
three alternatives are given, namely a polynomial of order 4, 5, and 6. In addition, the optimal noise levels
from the experiments are shown.

30

7.3.2 Varying Noise and Restart Point: All Application BNs

The purpose of the second set of application BN experiments was to establish the e¤ect, if any, of varying
the noise and the value of MAX-FLIPS for di¤erent applications BNs. Two variants of SGS, namely
SGS with uniform noise SU (p) and SGS with guided noise SG(p), were used. Further, a BN-speci�c
optimal initialization algorithm � either forward simulation [13] or a randomized variant of the Viterbi
algorithm [31, 49] � was used in I for each application BN. Each SGS variant � SU (p) or SG(p) � was
tested with four di¤erent BNs � Mildew, Munin1, Pir3, and Water � giving a total of eight conditions as
shown in Figure 14.
For each condition, noise was varied from p = 0:1 to p = 0:8, and di¤erent values for the MAX-FLIPS

restart parameter were also used. Results, in the form of sample means and piecewise linear approximations
for r̂(p), are reported in Figure 14. Each data point represents the mean for 1000 runs. In general, guided
noise SG(p) performed better than uniform noise SU (p), however the e¤ect on estimated run time r̂(p) of
increasing noise varied dramatically between problem instances. For Pir3, initialization was strong and
increasing noise only hurt performance. For Munin1, there was a marked di¤erence between uniform noise
and guided noise. Uniform noise hurt performance, while guided noise had, except for MAX-FLIPS = 10,
minor impact on run time. Water and Mildew had somewhat similar performance. Low levels of uniform
noise were helpful for some values of MAX-FLIPS, while for other values of MAX-FLIPS increasing noise
from p = 0:1 did not help. For Mildew, rather high levels of guided noise were optimal for all MAX-FLIPS
levels investigated. This was also the case for Water, except for MAX-FLIPS = 10. Except for some of
the curves for Pir3, these piecewise linear curves are clearly convex or close to convex, thus supporting our
analytical results.

8 Conclusion and Future Work

The use of randomization, in the form of noisy initialization and noisy local search steps, has empirically been
shown to have a dramatic and positive impact on the performance of local search [7,8,14,17,18,26,27,30,45,
46]. Consequently, stochastic local search (SLS) algorithms are currently strong performers in several areas
of automated reasoning, including the problems of satis�ability (SAT) in propositional logic [11, 18, 45, 46]
and computing MPE and MAP in Bayesian networks [22,27,30,36,37]. Previous research on stochastic local
search has been predominantly experimental, and there is a need for theoretical foundations [16].
We have in this article, based on discrete Markov chain models derived from a simple but general SLS

algorithm called SimpleSLS, developed a theoretical foundation for the role of noise in stochastic local
search. Analytically, we used hitting time analysis in Markov chain models to obtain our results. Curves
for expected hitting times are the analytical counterpart to empirical noise response curves often reported
in the literature [7, 8, 14, 16, 26]. Our analysis shows that expected hitting times, for individual instances
as well as for mixtures of instances, are rational functions with noise p as the independent variable. We
also emphasize the use of polynomials and convex functions. Analytically, we have found that the impact of
noise is quite context-dependent, and the shape of the expected hitting time curve depends strongly on the
problem instance at hand.
In order to improve our understanding of the interaction between noise and the presence of local maxima,

a simple class of trap functions based on deceptive functions [6] with these characteristics was introduced:
(i) one global maximum; (ii) one local (deceptive) maximum at maximal distance from the global maximum;
and (iii) a slope-change location controlling the size of the region from which greedy search only is su¢ cient
to reach the global maximum. Obviously, there are other crucial issues involved in SLS applied to NP-hard
problems. Our model, from which we derive trap Markov chains and then expected hitting times, highlights
the problem of how local maxima trap the search process, and how the careful application of noise helps in
escaping such traps. Trap functions are closely related to search space traps � portions of the search space
that are attractive to SLS but do not contain solutions [11,15].
Our results also include experiments. In this area, we used the stochastic local search algorithm SGS (sto-

chastic greedy search) for computing MPEs in Bayesian networks [27,30]. Using SGS, we experimented with
synthetic Bayesian network of varying di¢ culty, measured in terms of C=V -ratio [33]. In these experiments,
we illustrated that the Markov chain models are relevant to real problem instances. For instance, we found
good correspondence between expected hitting time results derived analytically from real problem instances,
SGS�s behavior on the same problem instances, and polynomial regression results. These noise response
curves were, as expected, similar to but not as extreme as the bounding hitting times for the two extreme
trap Markov chains de�ned over the same search space. We also sampled mixtures of problem instances,

31

as de�ned by C=V , and found that SGS generated noise response curves consistent with our hitting time
analysis. Here, we also performed extensive polynomial approximation experiments. Finally, experiments
with SGS using application Bayesian networks were also performed. Here, other input parameters of SGS
� including restarts, initialization algorithms, and noise algorithms � were varied in addition to the level
of noise. Results consistent with our analysis were in general found.
We conclude by outlining a few areas for future work. First, a natural extension of this research would be

to analyze and optimize the joint e¤ect of multiple SLS parameters, taking into account varying distributions
of problem instance inputs (including Bayesian networks), perhaps using convex optimization and response
surface techniques. Second, given the bene�t of guided noise observed in experiments, it would be fruitful
to study such approaches analytically. Third, this work provides a framework for improved analysis of
other algorithms that can be formalized by means of Markov chains, for instance genetic and evolutionary
algorithms. Fourth, the optimal noise level might vary for di¤erent sub-problems of one problem instance
as well as between di¤erent problem instances and problem instance distributions. Following this line of
reasoning, it would pay o¤ to adapt the noise level for one problem instance, within a try or between
di¤erent tries. While results on adaptive noise already exist [14,26], we hope that the analysis provided here
will inspire further research in this area.

Acknowledgments

This material is based upon work supported by NASA under award NCC2-1426. The anonymous reviewers
are acknowledged for their comments, which helped improve the article.

References

[1] A. M. Abdelbar and S. M. Hedetnieme. Approximating MAPs for belief networks is NP-hard and other
theorems. Arti�cial Intelligence, 102:21�38, 1998.

[2] S. Andreassen, M. Woldbye, B. Falck, and S.K. Andersen. MUNIN �A causal probabilistic network for
interpretation of electromyographic �ndings. In Proceedings of the Tenth International Joint Conference
on Arti�cial Intelligence, pages 366�372, Milan, Italy, August 1987.

[3] E. Cantu-Paz. Markov chain models of parallel genetic algorithms. IEEE Transactions on Evolutionary
Computation, 4(3):216�226, September 2000.

[4] F. G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks.
Arti�cial Intelligence, 42:393�405, 1990.

[5] A. P. Dawid. Applications of a general propagation algorithm for probabilistic expert systems. Statistics
and Computing, 2:25�36, 1992.

[6] K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In D. Whitley, editor, Foundations
of Genetic Algorithms II, pages 93�108. Morgan Kaufmann, San Mateo, CA, 1993.

[7] A. Fukunaga, G. Rabideau, and S. Chien. Robust local search for spacecraft operations using adaptive
noise. In Proceedings of the 4th International Workshop on Planning and Scheduling for Space (IWPSS-
04), Darmstadt, Germany, 2004.

[8] A. Gerevini, A. Saetti, and I. Serina. An empirical analysis of some heuristic features for local search in
LPG. In Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling
(ICAPS 2004), pages 171�180, Whistler, British Columbia, Canada, 2004.

[9] D. E. Goldberg and P. Segrest. Finite Markov chain analysis of genetic algorithms. In J. J. Grefenstette,
editor, Genetic algorithms and their applications: Proceedings of the second international conference on
genetic algorithms, pages 1�8, Hillsdale, NJ, USA, 1987. Erlbaum.

[10] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization. In
Proceedings of the Fifteenth National Conference on Arti�cial Intelligence (AAAI-98), pages 431�437,
Madison, WI, 1998.

32

[11] P. W. Gu, J. Purdom, J. Franco, and B. W. Wah. Satis�ability Problem: Theory and Applications,
chapter Algorithms for the Satis�ability SAT Problem: A Survey, pages 19�152. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1997.

[12] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller. The gambler�s ruin problem, genetic
algorithms, and the sizing of populations. In Proceedings of the IEEE Conference on Evolutionary
Computation, pages 7�12, Indianapolis, IN, 1997.

[13] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In Uncer-
tainty in Arti�cial Intelligence 2, pages 149�163. Elsevier, Amsterdam, 1988.

[14] H. H. Hoos. An adaptive noise mechanism for WalkSAT. In Proceedings of the Eighteenth National
Conference on Arti�cial Intelligence (AAAI-02), pages 655�660, Edmonton, Alberta, Canada, 2002.

[15] H. H. Hoos. A mixture-model for the behaviour of SLS algorithms for SAT. In Proceedings of the Eigh-
teenth National Conference on Arti�cial Intelligence (AAAI-02), pages 661�667, Edmonton, Alberta,
Canada, 2002.

[16] H. H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic local search
algorithms for SAT. Arti�cial Intelligence, 112(1-2):213�232, 1999.

[17] H. H. Hoos and T. Stützle. Local search algorithms for SAT: An empirical evaluation. Journal of
Automated Reasoning, 24(4):421�481, 2000.

[18] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications. Morgan Kaufmann,
San Francisco, 2005.

[19] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and D. Chickering. A Bayesian approach to
tackling hard computational problems. In Proceedings of the 17th Annual Conference on Uncertainty
in Arti�cial Intelligence (UAI-01), pages 235�244, Seattle, WA, 2001.

[20] F. Hutter, H. H. Hoos, and T. Stützle. E¢ cient stochastic local search for MPE solving. In Proceedings
of the Nineteenth International Joint Conference on Arti�cial Intelligence (IJCAI-05), pages 169�174,
Edinburgh, Scotland, 2005.

[21] P. Jones, C. Hayes, D. Wilkins, R. Bargar, J. Sniezek, P. Asaro, O. J. Mengshoel, D. Kessler, M. Lu-
centi, I. Choi, N. Tu, and J. Schlabach. CoRAVEN: Modeling and design of a multimedia intelligent
infrastructure for collaborative intelligence analysis. In Proceedings of the International Conference on
Systems, Man, and Cybernetics, pages 914�919, San Diego, CA, October 1998.

[22] K. Kask and R. Dechter. Stochastic local search for Bayesian networks. In Proceedings Seventh In-
ternational Workshop on Arti�cial Intelligence and Statistics, Fort Lauderdale, FL, Jan 1999. Morgan
Kaufmann.

[23] V. G. Kulkarni. Modeling, Analysis, Design, and Control of Stochastic Systems. Springer, New York,
2005.

[24] S. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and
their application to expert systems (with discussion). Journal of the Royal Statistical Society series B,
50(2):157�224, 1988.

[25] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press,
Cambridge, UK, 2002.

[26] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In Proceedings of the
14th National Conference on Arti�cial Intelligence (AAAI-97), pages 321�326, Providence, RI, 1997.

[27] O. J. Mengshoel. E¢ cient Bayesian Network Inference: Genetic Algorithms, Stochastic Local Search,
and Abstraction. PhD thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL, April 1999.

[28] O. J. Mengshoel. Designing resource-bounded reasoners using Bayesian networks: System health mon-
itoring and diagnosis. In Proceedings of the 18th International Workshop on Principles of Diagnosis
(DX-07), pages 330�337, Nashville, TN, 2007.

33

[29] O. J. Mengshoel. Macroscopic models of clique tree growth for Bayesian networks. In Proceedings of the
Twenty-Second National Conference on Arti�cial Intelligence (AAAI-07), pages 1256�1262, Vancouver,
British Columbia, 2007.

[30] O. J. Mengshoel, D. Roth, and D. C. Wilkins. Stochastic greedy search: Computing the most probable
explanation in Bayesian networks. Technical Report UIUCDCS-R-2000-2150, Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL, February 2000.

[31] O. J. Mengshoel, D. Roth, and D. C. Wilkins. Initialization and restart in stochastic local search:
Computing a most probable explanation in Bayesian networks. Submitted for publication, 2007.

[32] O. J. Mengshoel and D. C. Wilkins. Raven: Bayesian networks for human-computer intelligent inter-
action. In M. S. Vassiliou and T. S. Huang, editors, Computer Science Handbook for Displays, pages
209�219. Rockwell Scienti�c Company, 2001.

[33] O. J. Mengshoel, D. C. Wilkins, and D. Roth. Controlled generation of hard and easy Bayesian networks:
Impact on maximal clique tree in tree clustering. Arti�cial Intelligence, 170(16-17):1137�1174, 2006.

[34] D. Mitchell, B. Selman, and H. J. Levesque. Hard and easy distributions of SAT problems. In Proceedings
of the Tenth National Conference on Arti�cial Intelligence (AAAI-92), pages 459�465, San Jose, CA,
1992.

[35] J. Park. Using weighted MAX-SAT engines to solve MPE. In Proceedings of the 18th National Conference
on Arti�cial Intelligence (AAAI-04), pages 682�687, Edmonton, Alberta, Canada, 2004.

[36] J. D. Park and A. Darwiche. Approximating MAP using local search. In Proceedings of the Seventeenth
Conference on Uncertainty in Arti�cial Intelligence (UAI-01), pages 403�410, Seattle, WA, 2001.

[37] J. D. Park and A. Darwiche. Complexity results and approximation strategies for MAP explanations.
Journal of Arti�cial Intelligence Research (JAIR), 21:101�133, 2004.

[38] A. J. Parkes and J. P. Walser. Tuning local search for satis�ability testing. In Proceedings of the
Thirteenth National Conference on Arti�cial Intelligence (AAAI-96), pages 356�362, Portland, OR,
1996.

[39] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[40] D. Roth. On the hardness of approximate reasoning. Arti�cial Intelligence, 82:273�302, 1996.

[41] Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependence among runs: A dynamic pro-
gramming approach. In Proceedings of the Eighth International Conference on Principles and Practice
of Constraint Programming, pages 573�586, Ithaca, NY, 2002.

[42] Y. Ruan, E. Horvitz, and H. Kautz. Hardness-aware restart policies. In IJCAI-03 Workshop on Sto-
chastic Search Algorithms, Acapulco, Mexico, 2003.

[43] D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT procedures. Arti�cial
Intelligence, 132(2):121�150, 2001.

[44] B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large structured satis�abil-
ity problems. In Proceedings of the International Joint Conference on Arti�cial Intelligence (IJCAI-93),
pages 290�295, Chambery, France, 1993.

[45] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In Proceedings
of the Twelfth National Conference on Arti�cial Intelligence (AAAI-94), pages 337�343, Seatttle, WA,
1994.

[46] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�ability problems. In
Proceedings of the Tenth National Conference on Arti�cial Intelligence (AAAI-92), pages 440�446, San
Jose, CA, 1992.

[47] E. Shimony. Finding MAPs for belief networks is NP-hard. Arti�cial Intelligence, 68:399�410, 1994.

34

[48] J. Suzuki. A Markov chain analysis on a genetic algorithm. In S. Forrest, editor, Proceedings of the
Fifth International Conference on Genetic Algorithms, pages 146�153, San Mateo, CA, 1993.

[49] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal decoding algorithm.
IEEE Transactions on Information Theory, 13:260�269, 1967.

[50] C. Yanover and Y. Weiss. Finding the m most probable con�gurations in arbitrary graphical models.
In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems
16. MIT Press, Cambridge, MA, 2004.

[51] M. Yokoo. Why adding more constraints makes a problem easier for hill-climbing algorithms: Analyzing
landscapes of CSPs. In Proceedings of the Third International Conference on Principles and Practice
of Constraint Programming, volume 1330 of LNCS, pages 357�370. Springer Verlag, 1997.

35

C=V = 2:0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

20

30

p

r

C=V = 2:2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

20

30

40

p

r

C=V = 2:4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

30

40

50

p

r

C=V = 2:6

0.1 0.2 0.3 0.4 0.5 0.6 0.7

40

50

60

70

p

r

C=V = 2:8

0.1 0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

p

r

C=V = 3:0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
80

90

100

110

p

r

C=V = 3:2

0.1 0.2 0.3 0.4 0.5 0.6 0.7
120

140

160

180

p

r

C=V = 3:4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

200

250

300

p

r

Figure 12: Polynomial approximations for SGS average run times (�ips), as a function of noise level p,
for BNs with varying C=V -ratios. For each C=V -ratio, polynomial regression lines of varying order k are
presented, with k = 4 (line indicated by green crosses), k = 5 (line indicated by red squares), and k = 6
(line indicated by blue diamonds). The means of the measured data, connected with straight lines (black),
are also included.

36

(1) Uniform initialization, Uniform noise

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 50

MAX­FLIPS = 100

MAX­FLIPS = 500

(2) Guided initialization, Uniform noise

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 50

MAX­FLIPS = 100

MAX­FLIPS = 500

(3) Uniform initialization, Guided noise

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 50

MAX­FLIPS = 100

MAX­FLIPS = 500

(4) Guided initialization, Guided noise

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 50

MAX­FLIPS = 100

MAX­FLIPS = 500

Figure 13: Empirical results for the Water BN under four di¤erent conditions (1), (2), (3), and (4). In all
cases, the noise probability p, varying from p = 0:1 to p = 0:8, is shown on the x-axis. The mean run time
(measured in �ips) is displayed using a logarithmic scale on the y-axis. Each point represents the sample
mean of 1000 runs. For each condition, three di¤erent values of MAX-FLIPS were investigated as shown.

37

(1) Pir3, Uniform noise

0.1

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 10
MAX­FLIPS = 50
MAX­FLIPS = 100
MAX­FLIPS = 500
MAX­FLIPS = 1000

(2) Pir3, Guided noise

0.1

1

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 10 MAX­FLIPS = 50
MAX­FLIPS = 100 MAX­FLIPS = 500
MAX­FLIPS = 1000

(3) Munin1, Uniform noise

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 10
MAX­FLIPS = 50
MAX­FLIPS = 100
MAX­FLIPS = 500
MAX­FLIPS = 1000

(4) Munin1, Guided noise

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 10 MAX­FLIPS = 50
MAX­FLIPS = 100 MAX­FLIPS = 500
MAX­FLIPS = 1000

(5) Water, Uniform noise

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 10
MAX­FLIPS = 50

MAX­FLIPS = 100
MAX­FLIPS = 500

MAX­FLIPS = 1000

(6) Water, Guided noise

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 10 MAX­FLIPS = 50
MAX­FLIPS = 100 MAX­FLIPS = 500
MAX­FLIPS = 1000

(7) Mildew, Uniform noise

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 100
MAX­FLIPS = 500
MAX­FLIPS = 1000
MAX­FLIPS = 50

(8) Mildew, Guided noise

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise probability

R
un

 ti
m

e
(f

lip
s)

MAX­FLIPS = 50 MAX­FLIPS = 100

MAX­FLIPS = 500 MAX­FLIPS = 1000

Figure 14: Empirical results for the BNs Pir3, Munin1, Water, and Mildew under di¤erent experimental
conditions. In all cases, the noise probability p, varying from p = 0:1 to p = 0:8, is shown on the x-axis. The
mean run time (measured in �ips) is displayed using a logarithmic scale on the y-axis. Each point represents
the sample mean of 1000 runs. Two di¤erent noise mechanisms (Uniform and Guided) and �ve di¤erent
values of MAX-FLIPS (from MAX-FLIPS = 10 to MAX-FLIPS = 1000) were used. In most cases, the value
of the noise probability has a signi�cant impact on SLS run time.

38

